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a b s t r a c t

DNA-binding proteins play important roles in various cellular processes, and the identification of DNA-
binding proteins is important for understanding and interpreting protein function. This manuscript
presents algorithms for feature representation based on primary protein sequences and selective en-
semble classification. We first propose a multi-source interaction fusion feature representation model
that simultaneously considers interactions among physicochemical properties, evolutionary informa-
tion, and gap distances between residues. We also provide a selective ensemble algorithm based on
gap distances that yields differential base classifiers by selecting the feature subspaces. The selective
ensemble algorithm improves the generalization ability of the integrated classifiers. We then compare
the proposed algorithms with some state-of-the-art methods using multiple datasets. The experimental
results show that the proposed algorithms are competitive and effectively identify DNA-binding proteins.
The major contributions of the present study are the establishment of a model and algorithm for feature
representation that involves interaction efforts and the development of a selective ensemble classification
algorithm based on parameter perturbation. The proposed algorithms can also be applied to other
biological questions related to amino acid sequences.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In living cells, DNA-related activities occur with the aid of spe-
cific proteins and are regulated by protein–DNA interactions [1],
and this type of regulation is achieved by specific or nonspecific
binding between proteins and DNA. Proteins that bind to DNA
and subsequently regulate DNA-related activities are called DNA-
binding proteins, and these functional proteins in biological cells
play a vital role in a variety of important life activities [2]. In
addition, protein–DNA interactions play a key role in the genetic
and evolutionary mechanisms of organisms. The investigation of
protein–DNA interactions also forms the basis for human explo-
ration and understanding of the mechanisms of activities such as
growth, development, evolution and disease, and understanding
protein–DNA interactions is essential for the functional interpre-
tation of the proteome and the discovery of potential treatments
for genetic diseases.

∗ Corresponding authors.
E-mail addresses: wenjie.you@hotmail.com (W. You),

zyang@mathstat.yorku.ca (Z. Yang), ggb11111111@163.com (G. Guo),
wan@cvm.msstate.edu (X.-F. Wan), glji@xmu.edu.cn (G. Ji).

The application of traditional biological experimental tech-
niques, such as filter-binding assays [3], chromatin immunopre-
cipitation with DNA microarrays (ChIP-chip) [4] and X-ray crys-
tallography [5], allows the accurate identification of DNA-binding
proteins. However, the determination of protein structure and
function using biological methods requires extensive material and
financial resources and is time-consuming and laborious. With the
rapid development of protein sequencing technology, the amount
of protein sequence data is increasing. Thus, the field of proteomics
requires the use of more effective and reliable computational
methods for the analysis of biological sequences, and these meth-
ods comprise one of the most important topics in the field of
proteomics research.

There are two general categories of DNA-binding protein pre-
diction methods that are based on machine learning: structure-
based prediction methods [6,7] and sequence-based prediction
methods [8–12]. The structure-based prediction of DNA-binding
proteins can achieve higher recognition rates, but these methods
cannot be widely used for the interpretation of high-throughput
sequences due to the lack of sufficient information on protein
structure. Most current methods predict protein function based on

https://doi.org/10.1016/j.knosys.2018.09.023
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the amino acid sequence because many experiments have shown
that if the primary structures (the sequence of amino acid residues)
of polypeptides or proteins are similar, the spatial conformations of
the polypeptides after folding and their functions are also very sim-
ilar [13]. The sequence-based protein function prediction method
consists of two main processes: (1) extraction of biological in-
formation contained in the protein sequence and transformation
of the protein sequence into a corresponding numerical feature
vector and (2) usage of a machine learning algorithm to train a
model with the resulting numerical feature vectors and prediction
of the query sequences.

Feature vector representation, which is also referred to as fea-
ture representation, involves the generation of numerical feature
vectors based on protein sequences, i.e., it involves the conversion
of original sequence data into numerical feature vectors for clas-
sification. During the past few decades, effective sequence-based
feature representation methods have been developed, and these
include (1) amino acid composition (AAC)-based methods [14,15],
which consider the information encoded by adjacent and con-
tinuous amino acid residues, (2) pseudo-amino acid composition
(PseAAC)-based methods [16,17], which consider the information
encoded by non-adjacent (discontinuous) amino acid residues, and
(3) sequence profile-based methods [18], which consider evolu-
tionary information of proteins. AAC-based methods, such as the
commonly used k-mer frequency approach, use statistical infor-
mation on the sequence [19]. These methods are simple, but their
generated feature dimensionality is high (20k, k is the sliding win-
dow length), leading to over-fitting. The PseAAC-based methods,
which were proposed by Kuo-chen Chou [16], consider both the
local order and the global order of a sequence to better represent
the order and position information within the sequence. These
methods can map the position information of a sequence into
the generated feature vector. Sequence-profile-basedmethods use
a position-specific scoring matrix (PSSM) with evolutionary in-
formation representing homology information related to aligned
sequences. Many applications based on PSSMs demonstrate that
PSSMs with evolutionary information contain more important and
relevant information than protein sequences alone [10,20–22]. The
sequence profile-based methods usually have better predictive
ability than other methods and are widely used for protein pre-
diction [22].

Previous studies have shown that evolutionary information,
physicochemical properties and sequence structural and loca-
tional information all play roles in the identification of DNA-
binding proteins [14,15,18]. When a single method, such as an
AAC information- or a sequence profile-based method, is used, the
resulting numerical features are overlymonotonous. Currently, the
mainstream approach used in the literature is to consider different
properties (such as the different physicochemical properties of
proteins) and information (such as evolutionary and structural
information). The feature vectors generated by these methods [23,
24] are then combined, and the resulting high-dimensional feature
vectors are fed into a classifier. We refer to this type of explicit
feature representation as combined fusion feature representation
(CFFR), which integrates the physicochemical properties of amino
acids, the evolutionary information extracted from sequence pro-
files, and the information inherent to the sequence (information on
adjacent and non-adjacent residues) to achieve better prediction
performance [23,25].

Different machine learning algorithms are widely used in fea-
ture spaces generated by different feature representationmethods
to further improve the ability to predict DNA-binding proteins,
such as support vector machine (SVM), neural network, K-nearest
neighbors and random forest. In recent years, ensemble learning
technology has also received extensive attention in the field of
pattern recognition and bioinformatics. Ensemble learning [26]

refers to learning from training samples to build a number of
differential learning models (called the base classifier) and then
employing a specific strategy to combine these base classifiers to
solve a single learning task. In selective ensemble learning [27],
an additional stage of pruning or selection of base classifiers is
included between the first stage (base classifier construction) and
the second stage (classifier combination) of ensemble learning,
and this additional stage aims to select a subset of base classifiers
that show large differences and exert a good effect. At present,
an intuitive method for generating a selective ensemble involves
sorting the base classifiers to achieve the purpose of pruning and
integration [28–31].

For the identification of DNA-binding proteins, the current
mainstreammachine learningmethods are usually combinedwith
feature representation and classification algorithms. Liu et al. [32]
used a reduced-alphabet method to reduce the dimension of the
PseAAC vector (named iDNA-Prot|dis), and it can accelerate the
computational time of the Cai’s algorithm. Later, they combined
PseAAC with physicochemical distance conversion (named
PseDNA-Pro) [33]. The results indicated that the proposed method
can further improve the predictive ability from PseAAC vector.
Lin et al. [12] proposed iDNA-Prot predictor by incorporating the
features into the general form of PseAAC that were extracted from
protein sequences via the grey model and by adopting the random
forest operation engine. Kumar et al. [10] incorporated evolution-
ary information into sequence-basedmethods. They combined the
evolutionary and sequential features into a SVM predictor called
DNAbinder. The evolutionary features significantly improved the
predictive accuracy [10], suggesting that the evolutionary infor-
mation is important for distinguishing DNA-binding proteins from
non-DNA-binding proteins. Similar results were reported by Ho
et al. [20]. Later, Kumar et al. [34] employed random forestmethod,
named DNA-Prot, to identify DNA binding proteins from pro-
tein sequence. They compared DNA-Prot method with DNAbinder
method on three benchmark datasets. The results have shown that
DNA-Prot achieves better performance. Liu et al. [22] proposed a
new method for DNA-binding protein prediction called iDNAPro-
PseAAC, which integrates the profile-based representation of the
evolutionary information retrieved by PSI-BLAST into the classical
PseAAC, and they found that negative samples in the training
model improved the predictive performance. Dong et al. [19]
combined SVM and the auto-cross covariance transformation. The
protein sequence represented in the form of amino acids or physic-
ochemical properties of amino acids are converted into a series
of fixed-length vectors by Kmer composition and the auto-cross
covariance transformation. Wei et al. [25] established a novel pre-
dictor named Local-DPP, which combines the local Pseudo PSSM
(Pse-PSSM) features with random forest classifier. The generated
features can efficiently capture the local conservation information,
together with the sequence-order information. Experiments have
shown that Local-DPP significantly improved the accuracy of the
existing predictors.

For the identification of DNA-binding proteins, the develop-
ment of an efficient feature representation method that can gen-
erate features with discriminant information from a sequence and
then accurately identify and classify DNA-binding proteins has
important significance for informatics and biology. In this paper,
a multi-source fusion feature representation method that takes
into account physicochemical properties, evolutionary informa-
tion and relative position information between residues and con-
siders their interaction effects is proposed. The proposed algorithm
can generate features with strong discriminative ability and im-
prove the prediction of DNA-binding proteins. The features gen-
erated by the algorithm help us understand the functions and
roles of DNA-binding proteins from the perspective of interactions.
Subsequently, we perturb the parameters of the proposed feature
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representation algorithm to generate multiple base classifiers and
obtain differential classifiers via selection (pruning) to further im-
prove the overall recognition performance of the ensemble clas-
sifier. Experimentally, our interaction fusion feature representa-
tion (IFFR) yields improved recognition compared with traditional
CFFR. Moreover, the use of selective ensembles based on parame-
ter perturbation significantly improves the identification of DNA-
binding proteins compared with other state-of-the-art prediction
methods. Furthermore, from the perspective of protein interac-
tions, the proposed feature representation helps us understand the
functions and roles of DNA-binding proteins in cellular processes.

The remainder of the paper is organized as follows. Section 2
discusses the DNA-binding protein prediction method, including
IFFR and its selective ensemble algorithm. In Section 3, DNA-
binding proteins in multiple protein sequence datasets are identi-
fied, and comparisons with multiple classical prediction methods
are provided.We then present conclusions and discuss futurework
in Section 4.

2. Methodology

In the practical application of machine learning, it is generally
believed that data and features determine the upper limit of learn-
ing performance and that models and algorithms can approximate
this upper limit [35]. Therefore, we simultaneously pursued two
goals: (1) the generation of features with strong discriminative
ability through effective integration of a variety of types of in-
formation and (2) the generation of a classification model with
strong generalization ability using selective ensembles of multiple
classifiers. Fig. 1 shows the framework of our prediction model,
which consists of two key components: (1) Feature representation
process: For an amino acid sequence of any length, the two scoring
matrices, namely, PCSMand PSSM,which express physicochemical
properties and evolutionary information, are given (Definition 1),
and the twomatrices are then combined by columns. A covariance
operation is subsequently performed on the merged matrix (Def-
inition 3) to obtain a feature vector with dual source interaction
fusion (IFFR). Similarly, based on the fusion of interactions with
a dual source, information on the gap distances between residues
is introduced (Definition 2) to realize triple-source fusion feature
representation (GapIFFR). (2) Selective ensemble process: The pa-
rameter λ of the feature representation algorithm GapIFFR is per-
turbed to generate different feature subspaces, and the different
input subspaces are then subjected to selection (or pruning) to
obtain a subset of differential base classifiers. The optimal selection
of base classifiers is then identified to achieve selective ensemble
based on gap distance (GapIFFR-SE).

2.1. Hypothesis

Considering and using appropriate physicochemical properties
and evolutionary information is key to identifying DNA-binding
proteins based on their protein sequences. CFFR, which is com-
monly used, considers physicochemical properties to some extent
as well as evolutionary information, local position information and
other features of a protein, and its use can therefore enhance the
ability to identify DNA-binding proteins. However, the CFFR-based
method treats physicochemical properties and evolutionary infor-
mation independently and thus ignores the existence of interaction
effects between various properties and evolutionary information.
As a result, the features generated by CFFR carry only the explicit
features of each information source itself and ignore the implicit
features generated by the interaction between different informa-
tion sources. In fact, based on the biochemical reactions that occur
in cells, living cells have many interactions, such as interactions
between proteins and interactions between amino acid residues.

This paper focuses on multi-source fusion feature representation
with interaction effects and examines whether interactions be-
tween different properties (physicochemical properties, etc.) and
information (protein evolution information, etc.) occur and, if so,
whether these interactions can improve the recognition of DNA-
binding proteins. We propose the following hypotheses:

Hypothesis 1 (Interaction Effects Exist Between Physicochemical
Properties and Evolutionary Information). In this paper, we consider
feature representationwith interactions between physicochemical
properties and evolutionary information, termed IFFR (Interaction
Fusion Feature Representation). Within families of protein se-
quences, amino acid substitution patterns are highly specific, and
there are also interactions between amino acid residues at differ-
ent positions in the same protein sequence. We propose an IFFR
based on different gap distances; that is, based on the fusion of
interactions from two sources (physicochemical properties and
evolutionary information), a gap operationwith different distances
(λ-gap) is introduced to achieve a triple-source fusion feature
representation algorithm, GapIFFR.

Multi-source fusion is an effective information processing tech-
nology. From an information theory point of view, it can (at least
ideally) improve the specificity and comprehensiveness of our
understanding of an entity [36]. For example, formulti-source data,
by aggregating the results obtained fromeach single source of data,
the literature [37] establishes an evaluation function for inducing
three-way decision making and performing three-way concept
learning, and numerical experiments have shown the effectiveness
of the proposed method. Therefore, drawing on concepts from the
relevant literature, we propose the following hypothesis:

Hypothesis 2 (Within the IFFR Framework, Triple-Source Fusion
GapIFFR is Better than Dual-Source Fusion GapPSSM). The essence of
the triple-source IFFR, GapIFFR, is the feature interaction fusion of
physicochemical properties and evolutionary informationwith the
addition of gap information at different distances. This algorithm
simultaneously considers physicochemical properties, evolution-
ary information, local sequence location and other information
from protein sequences.

2.2. Models

The feature representation process digitizes a sequence com-
posed of characters into a fixed-dimensional feature vector based
on mathematical relationships within the sequence, biochemical
properties and other indicators. The generated feature vector can
include both explicit and implicit features. For the feature repre-
sentation of protein sequences, this section provides a new IFFR
model that can consider both the internal correlations of various
information (explicit features) and the interaction effects between
different types of information (implicit features). A related concep-
tual description is given first, and from this description, a multi-
source fusion feature representationmodelwith interaction effects
is derived.

Definition 1 (Scoring Matrix: SM). Given any (protein) sequence
S = R1, R2, . . . , RL, the scoring matrix is defined as

P = (pij)L×M (1)

where pij (i = 1, 2, · · · , L) is the score of the ith amino acid residue
Ri on the jth index, L is the length of sequence S, and M is the pre-
determined number of indicators.

Protein sequence analysis often uses an SM, such as a PSSM,
which is a matrix with L rows (L is the sequence length) and 20
columns (20 standard amino acids). The protein dataset search
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Fig. 1. DNA-binding protein predictionmodel framework: interaction fusion feature representation (left dashed box) and selective ensemble for classification (right dashed
box).

program PSI-BLAST can find an optimal result through multiple
iterations and is useful for identifying new members of a protein
family or detecting similar proteins in distantly related species [38,
39]. The use of PSI-BLAST can generate a PSSM:

P =

⎡⎢⎢⎣
p1,1 p1,2 · · · p1,20
p2,1 p2,2 · · · p2,20
...

...
...

pL,1 pL,2 · · · pL,20

⎤⎥⎥⎦
L×20

(2)

In (2), the element pij represents the probability (log-likelihood
score) of the amino acid residue Ri at the ith position (1 ≤ i ≤ L)
of a sequence mutating to the jth class (1 ≤ j ≤ 20) amino
acid during the process of protein evolution, and greater values
indicate a greater likelihood of substitution. A PSSM expresses
the evolutionary information of the sequence, and the detailed
procedure for calculating a PSSM is given in Appendix A.

We also use a SM for amino acid physicochemical properties
(Physicochemical Scoring Matrix: PCSM). In the process of iden-
tifying DNA-binding proteins, we assume that the different phys-
iochemical properties of amino acids will make different contri-
butions to the predicted results. Therefore, we should consider
appropriate amino acid physiochemical properties in the feature
representation process. An amino acid index (AAindex) is a set
of 20 numerical values representing any of the different physico-
chemical and biological properties of amino acids. Specifically, the
AAindex is a database of numerical indices representing various
physicochemical and biochemical properties of amino acids, and
the AAindex1 section is a collection of published indices that cur-
rently contains 566 indices. For the jth physicochemical property
Qj, any protein sequence S can be expressed as q1,j, q2,j, . . . , qL,j,
where L is the sequence length, and qij(1 ≤ i ≤ L) is the
jth physicochemical property index of the ith amino acid residue
Ri in the sequence. Assuming that M types of physicochemical
properties exist, the PCSM for the protein sequence is as follows:

Q =

⎡⎢⎢⎣
q1,1 q1,2 · · · q1,M
q2,1 q2,2 · · · q2,M
...

...
...

qL,1 qL,2 · · · qL,M

⎤⎥⎥⎦
L×M

(3)

In the experimental section, to ensure the fairness of the com-
parison results, we use only the six physicochemical properties
listed in the literature [40]: (1) hydrophobicity, (2) hydrophilicity,
(3) mass, (4) pK1 (α-COOH), (5) pK2 (NH3), and (6) pI (25 ◦C). The
detailed physicochemical indices of the amino acids used in this
paper are given in Table 7 in Appendix B.

Two amino acids located far from each other in the amino acid
sequencemight be spatially close to each other and even in contact
after the protein polypeptide chain is folded. In three-dimensional
space, each residue has its own specific space coordinates, and a
result, the Euclidean distance between two residues, also known as

spatial distance, can be obtained. If the Euclidean distance between
two residues (between Cβ atoms) is less than 8 Å, the residues are
biologically considered to be in contact. This interaction between
residues (i.e., contact) has a huge impact on protein structure and
function. Therefore, considering the interactions between amino
acid residues located at different distances in the protein sequence
based on an analysis of pseudo-amino acid composition and the
drawing on the idea of pseudo-amino acid composition analy-
sis [16], the definition of the λ-gap SM (λ-gapSM) is given.

Definition 2 (λ-gapSM). Given an SM P = (pij)L×M and parameter
λ, the λ-gap scoring matrix is a (L − λ) × M matrix Gλ, which is
defined as follows:

Gλ = AλP = Aλ

⎛⎜⎜⎝
p1
p2
...

pL

⎞⎟⎟⎠ =
⎛⎜⎜⎝
p1 + pλ+1
p2 + pλ+2

...

pL−λ + pL

⎞⎟⎟⎠ (4)

where Aλ = (aij)(L−λ)×L is the (0-1) matrix, aij ∈ {0, 1}, i.e.,

Aλ =

⎛⎜⎜⎝
a1
a2
...

aL−λ

⎞⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝

1, 0, . . . , 1
←−−−−−→

, 0 · · · 0, 0, . . . , 0, 0
0, 1, 0, . . . , 1
←−−−−−→

, · · · 0, 0, . . . , 0, 0
... · · ·

...

0, 0, . . . , 0, 0 · · · 0, 1, . . . , 0, 1
←−−−−−→

⎞⎟⎟⎟⎟⎠ (5)

λ (0 ≤ λ ≤ L − 1) represents the distance between two nonzero
elements aki and akj in any row vector ak of matrix Aλ, i.e., λ =

|j− i|. In particular, if λ = 0, A0 degenerates into the identity
matrix IL, that is, a 0-gapSM,

G0 = A0P = ILP = P (6)

The λ-gapSM indirectly represents information on the relative
positions of residues in a sequence, and λ represents the gap
distance between any two residues, i.e., relative to the spatial
distance, which is referred to herein as the sequence-based gap
distance. In particular, if λ is equal to 0, the λ-gapSM does not con-
sider information between residues; if λ is equal to 1, information
between adjacent residues is considered; and if λ is greater than 1,
information between non-adjacent residues is considered.

Definition 3 (Covariance SM: CovSM). Given a λ-gapSM Gλ =

(gij)(L−λ)×M , a covariance matrix of the λ-gapSM is defined as fol-
lows:

Σ = Cov(Gλ) = GT
λGλ = (σij)M×M (7)

It follows that Σ is a symmetric matrix.
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Suppose that U is an upper triangular matrix corresponding to
the symmetric matrix Σ = (σij)M×M , i.e.,

U =

⎛⎜⎜⎝
σ1,1 σ1,2 · · · σ1,M

σ2,2 · · · σ2,M
...

σM,M

⎞⎟⎟⎠ (8)

The matrix ‘‘vec’’ operator is applied to U by a column vector,
and the elements σij that satisfy i ≤ j are retained; as a result,
the ‘‘vec’’ operator transforms a matrix into a column vector by
stacking the columns of the matrix. Thus, we derive the following
remark.

Remark 1. Given any protein sequence S = R1, R2, · · · , RL and gap
distance λ, it is easy to derive a feature vector,

v = vec(U) = (σ1,1, σ1,2, σ2,2, · · · , σ1,M , σ2,M , · · · , σM,M )T (9)

Obviously, the dimension of this vector is (M(M + 1)/2), and this
dimension is only related to M and is independent of L (sequence
length) and λ (gap distance).

The significance of Remark 1 lies in the generated vector, which
contains not only the relevant information (such as length) of the
original sequence but also the spacing information for adjacent and
non-adjacent residues. However, the dimension of the resulting
feature vector does not depend on the length of the sequence or
gap distances.

A mathematical model of our proposed feature representation
is presented below. For the scoring matrices PSSM and PCSM, the
corresponding scoring matrices λ-gapPSSM and λ-gapPCSM can
be obtained by Definition 2. Given any protein sequence of length
L, there are the PSSM matrix P and the PCSM matrix Q, and by
horizontally concatenating P and Q, the matrix W = (P,Q ) =
(wij)L×(M+20) can be obtained. Based on Definition 2, the λ-gapSM
can be obtained as follows:

Gλ = AλW = Aλ(P,Q ) = (AλP, AλQ ) (10)

According to Definition 3 and block matrix operations, it is easy to
obtain
Σ = Cov(Gλ) = (AλP, AλQ )T (AλP, AλQ )

=

(
PTAT

λ

Q TAT
λ

)
(AλP, AλQ )

=

(
PTAT

λAλP PTAT
λAλQ

Q TAT
λAλP Q TAT

λAλQ

)
(M+20)×(M+20)

(11)

From Remark 1, the dimension of the feature vector corre-
sponding to Eq. (11) is related only toM and is independent of the
sequence length L and the parameter λ.

In the abovementioned feature representation model, we use
the correlation information Q TAT

λAλQ and PTAT
λAλP contained in

the physicochemical property matrix Q and the evolutionary in-
formation matrix P, respectively, to generate explicit features. To
generate an implicit feature, we also consider the interaction ef-
fect term Q TAT

λAλP (or PTAT
λAλQ ) between the physicochemical

property matrix and the evolutionary information matrix. Here,
AT

λAλ depicts the location information of adjacent andnon-adjacent
residues (distance equal to λ). In particular, if λ = 0(A0 = I),
Eq. (11) can be simplified to

Σ = (P,Q )T (P,Q ) =
(
PT

Q T

) (
P Q

)
=

(
PTP PTQ
Q TP Q TQ

)
(M+20)×(M+20)

(12)

Table 1
Feature representation methods developed within the proposed model framework.
Scoring
matrix

Matrix
dimension

CovSM (Def-
inition 3)

Vector
dimension
(Remark 1)

Feature
representation

SM (Defini-
tion 1)

L×M M ×M M(1+M)/2

PCSM L× 6 6× 6 21 CovPCSM
PSSM L× 20 20× 20 210 CovPSSM

231b CFFR
L× 26a 26× 26 351 IFFR

λ-gapSM
(Defini-
tion 2)

(L-λ)×M M ×M M(1+M)/2

λ-gapPCSM (L-λ)×6 6× 6 21 GapPCSM
λ-gapPSSM (L-λ)×20 20× 20 210 GapPSSM

231b GapCFFR
(L-λ)×26a 26× 26 351 GapIFFR

aHorizontal concatenation of the above two matrices;
bTandem combination of the above two vectors.

Table 1 summarizes the relevant information on the different
feature representation methods in the framework of our model,
including the dimension of the SM, the dimension of the generated
feature vector, and the abbreviation of the feature representation
methods. Among these methods, CovPCSM considers six different
physicochemical properties and their own internal correlations,
and the dimension of the generated feature vector is 21. CovPSSM
considers the evolutionary information of a sequence and their
correlations for all 20 amino acids, and the feature dimension is
210. The CFFR method conducts a simple tandem combination of
the previous two methods; the resulting feature dimension is the
sum of the feature dimensions of the individual methods and is
equal to 231. IFFR considers not only the correlations within the
six physicochemical properties studied and within evolutionary
information but also the interactions between physicochemical
properties and evolutionary information; thus, the generated fea-
ture dimension is equal to 351. In this paper, we also consider
the relative location information for residues and propose a multi-
source fusion feature representationmethodwith the gap distance
λ. These feature representations are named GapPSSM, GapCFFR
and GapIFFR. The proposed mathematical models and algorithms
are universal, and the analytical methods discussed in this paper
can be applied to other biological questions related to amino acid
sequences.

2.3. Algorithms

For the DNA-binding protein prediction problem, this section
provides the feature representation GapIFFR algorithm (Algorithm
1) and the selective ensemble classification algorithm (Algorithm
2).

(1) Gap-based IFFR algorithm
Based on the proposed feature representation model, a new

multi-source feature representation algorithm, GapIFFR, is pro-
posed. This algorithm considers the interaction effects among spe-
cific physicochemical properties, evolutionary information, and
location information between (adjacent and non-adjacent) amino
acid residues. The detailed algorithm is as follows:
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In particular, if W = P (ignoring Q ) in Step 4 of Algorithm 1,
the algorithm GapPSSM is produced; similarly, ifW = Q (ignoring
P) in Step 4 of Algorithm 1, the algorithm GapPCSM is produced.
The feature vector returned by the GapCFFR algorithm is the com-
bination of the feature vectors generated by these two algorithms
(details given in Table 1). The input parameter λ of Algorithm 1
is the gap distance between residues. If λ = 0, the above feature
representation algorithm considers only physicochemical proper-
ties and evolutionary information, and Algorithm 1 degenerates
into dual-source IFFR. Similarly, if λ = 0 and W = P in Step 4
of Algorithm 1, the algorithm degenerates into a feature represen-
tation based only on evolutionary information, denoted CovPSSM;
if λ = 0 and W = Q in Step 4 of Algorithm 1, the algorithm
degenerates into a feature representation based only on physic-
ochemical properties, denoted CovPCSM. The CFFR algorithm is
a tandem combination of the two feature vectors generated by
CovPSSM and CovPCSM (details are given in Table 1). If number of
sequences in the NR database is represented by N_library_seq and
the average length of the sequence is L, the complexity of Algorithm
1 is O(N_library_seq · L2). The main advantages of Algorithm 1
are that it can be applied to amino acid sequences of any length
and that it considers the interactions among multiple sources of
information. As a result, it can mine potentially useful biological
information hidden in protein sequences and generate features
with strong discriminating abilities.

(2) GapIFFR-based selective ensemble algorithm
Given a set of protein sequences, a training set Strn, a validation

set Sval and a test set Stst are randomly divided. If D(λ)
trn = {(x

(λ)

i , yi)}
is the training set corresponding to Strn, an input variable x(λ)

i =

(x(λ)

i1 , x(λ)

i2 , . . . , x(λ)

ip ) ∈ ℜp within the training sample (x(λ)

i , yi) is
the p-dimensional feature vector obtained by Algorithm1with gap
distance λ, and the output variable is yi ∈ Y = {+1,−1}. Similarly,
the validation set D(λ)

val and the test set D(λ)
tst can be obtained. The

base classifier Cλ can be trained on D(λ)
trn (1 ≤ λ ≤ L − 1) to obtain

a set of T = {C1, C2, . . . , CL−1}, where T is any subset of T. The
validation error ε(T ) of the ensemble classifiers corresponding to
subset T in the validation set D(λ)

val can be calculated, and the subset
T ∗ = arg minT⊂Tε(T ) with the smallest validation error is selected.

The optimal base classifier subset T ∗ can be obtained by an ex-
haustive search. However, if L is large, the associated computation
would be excessive. A simple and intuitive selection strategy is
to sort the base classifier Ci by the performance index M, select a
subset T ∗ consisting of the top k (odd) base classifiers, as is per-
formed when pruning ensemble classifiers, and then vote on the
subset T ∗ ⊂ T using the Max-Wins Voting (MWV) strategy [41].
The following depicts the selective ensemble algorithm based on
GapIFFR:

Table 2
Summary of datasets.
Dataset Number of proteins Min

length
Similarity

DNA-BP Non-DNA-BP Total

Alternate Dataset [10] 1153 1153 2306 51 ≤25%
PDB1075 Dataset [32] 525 550 1075 50 ≤25%
Independent 1 Dataset [34] 823 823 1646 35 ≤40%
Independent 2 Dataset [34] 88 233 321 30 ≤40%

Training Dataset [10] 146 250 396 26 ≤25%
Testing Dataset [42] 92 100 192 45 ≤25%

Algorithm 2 is a GapIFFR-based selective ensemble, GapIFFR-
SE, that essentially perturbs the parameter λ to generate different
input feature subspaces and then uses the strategy of selection
(pruning) to obtain a subset of differential base classifiers and
thereby improve the performance of the integrated classifier. The
time complexity of Algorithm 2 is O(n_seq · N_library_seq · L3),
whereN_library_seq is the number of sequences in the NR database
and L is the average length of the sequence.

3. Experiments

3.1. Experimental datasets and evaluation indicators

To verify the effectiveness of the proposed method, six se-
quence datasets of DNA-binding proteins (including one group of
independent testing sets) are selected for analysis. Their sample
sizes are relatively large (≥300), and these datasets have sequence
homologies less than 40%, guaranteeing the relative credibility
of the experimental results. Table 2 provides a summary of the
datasets used and lists their sources.1

To objectively and systematically evaluate the predictive per-
formance of theproposedmethod, the Jackknife validationmethod,
k-fold cross validation (k-foldCV) and the HoldOut method are

1 http://www.imtech.res.in/raghava/dnabinder/download.html
http://server.malab.cn/Local-DPP/Datasets.html
http://www3.ntu.edu.sg/home/EPNSugan/index_files/dnaprot.htm.

http://www.imtech.res.in/raghava/dnabinder/download.html
http://server.malab.cn/Local-DPP/Datasets.html
http://www3.ntu.edu.sg/home/EPNSugan/index_files/dnaprot.htm
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used to compare and evaluate the algorithms proposed in this pa-
per. k-foldCV can effectively reduce the over-learning and under-
learning states caused by insufficient data. In practice, 10-fold
CV is considered a standard method. The Jackknife validation
method is considered a more objective statistical test; it can avoid
randomness due to random division of the training and test data,
thereby ensuring the reproducibility of the experimental results.
The HoldOut method can determine the predictive ability of the
algorithm for fresh samples (independent test sets).

The evaluation indices used for algorithm performance are ac-
curacy (ACC), sensitivity (SE), specificity (SP) and the Matthews
Correlation Coefficient (MCC), which are defined below.

ACC =
TP + TN

TP + TN + FN + FP
× 100%

SE =
TP

TP + FN
× 100%

SP =
TN

TN + FP
× 100%

MCC =
TP × TN − FP × FN

√
(FP + TP)(TP + FN)(TN + FP)(TN + FN)

Here, TP (true positive) indicates the number of DNA-binding pro-
teins that are correctly predicted as DNA-binding proteins, TN
(true negative) indicates the number of non-DNA-binding pro-
teins that are correctly predicted as non-DNA-binding proteins, FP
(false positive) is the number of non-DNA-binding proteins that
are incorrectly predicted as DNA-binding proteins, and FN (false
negative) indicates the number of DNA-binding proteins that are
incorrectly predicted as non-DNA-binding proteins.

ACC represents the percentage of the sum of correctly classified
samples (TP and TN) among the total number of classified samples,
SE represents the percentage of TP among all predicted positives,
and SP represents the percentage of TN among all predicted nega-
tives. In a perfect prediction system, these three indicators would
achieve scores of 100%. However, in unbalanced datasets, increases
in SE lead to decreases in SP, and vice versa. Thus, these indicators
do not evaluate prediction results well. In comparison, MCC is a
more balanced evaluation criterion with the range [−1,+1]: a
value of 1 indicates that the prediction result correlates perfectly
with the true categories, a value of 0 indicates a completely random
prediction, and a value of−1 indicates total disagreement between
the prediction result and the true categories. The area under the
curve (AUC) of the receiver operating characteristic (ROC) curve
can be used as a more objective classification performance evalua-
tion criterion. The ROC curve is a unit squarewith values along two
axes (false positive rate and true positive rate) ranging from 0 to 1;
the AUC maximum of 1 corresponds to a perfect classifier.

It should be noted that the experimental results used in the
comparisons performed in this study are all based on the use of
the base classifier, which is a linear kernel SVM, i.e., C-SVM in
libsvm toolkit (default SVM type), the parameter kernel_type is set
to linear kernel (no parameters required). Because we focus our
attention on the feature representation of protein sequences, we
did not optimize the classifier. Obviously, better predictions can
be obtained by selecting the classifier and adjusting its parameters.
Moreover, to better demonstrate the effectiveness of the proposed
method, we also did not deliberately select the more favorable
physicochemical properties. In fact, we have found that better
predictions can be obtained by selecting a more efficient subset of
physicochemical properties than just using the six physicochemi-
cal properties listed in the literature [40].

Table 3
Comparison of the prediction performances of different feature representations
(Jackknife validation test).
Dataset Evaluation indices Feature representation method

CovPCSM CovPSSM CFFR IFFR

MCC 0.3015 0.4701 0.4735 0.4824
Alternate ACC (%) 63.62 73.11 73.29 73.76
Dataset SE (%) 85.08 82.22 82.31 82.31

SP (%) 42.15 64.01 64.27 65.22
MCC 0.3882 0.5266 0.5504 0.5533

PDB1075 ACC (%) 68.65 76.00 77.21 77.40
Dataset SE (%) 57.27 69.64 71.09 71.82

SP (%) 80.57 82.67 83.62 83.24

MCC 0.6881 0.9612 0.9612 0.9624
Independent 1 ACC (%) 84.14 98.06 98.06 98.12
Dataset SE (%) 78.01 97.57 97.45 97.57

SP (%) 90.28 98.54 98.66 98.66
MCC NaN 0.6826 0.6761 0.6937

Independent 2 ACC (%) 72.59 87.23 86.92 87.85
Dataset SE (%) 0.00 78.41 78.41 77.27

SP (%) 100.00 90.56 90.13 91.85
MCC 0.4050 0.6922 0.7099 0.7197

Training ACC (%) 72.22 85.61 86.36 86.87
Dataset SE (%) 77.60 88.00 88.00 88.80

SP (%) 63.01 81.51 83.56 83.56

Note: The values shown in bold are the best prediction results.

3.2. Evaluation of dual-source IFFR

In this experiment, we focus on the assessment of the proposed
feature representation algorithms (without ensemble techniques);
in other words, we discuss model selection for feature repre-
sentation. For the DNA-binding protein prediction problem, we
first compare and evaluate the performance of dual-source IFFR
(i.e., Algorithm 1with λ = 0) based on physicochemical properties
and evolutionary information. Some state-of-the-art feature repre-
sentation algorithms are also used for comparison.

First, the performances of the four algorithms, CovPCSM,
CovPSSM, CFFR and IFFR, are validated and compared using the
Jackknife method with the benchmark datasets. The results are
shown in Table 3. The CovPCSM method considers only physic-
ochemical properties, and its recognition ability is mediocre. The
CovPSSMmethod considers only evolutionary information but has
better recognition ability. The CFFR method is a simple tandem
combination of CovPCSM and CovPSSM; the generated feature vec-
tor considers both physicochemical properties and evolutionary
information, and its recognition ability is slightly better than that of
CovPSSM. The IFFR approach considers not only correlationswithin
physicochemical properties and within evolutionary information
but also the interaction effects between physicochemical prop-
erties and evolutionary information and thereby achieves better
recognition.

We then further examine and compare the performance of the
proposed feature representation IFFR with three feature represen-
tation algorithms, pseudo-PSSM (PsePSSM) [43], PseAAC and AAC,
with the four independent datasets. To produce a more objective
and reliable comparison, we use 30 random results of 10-foldCV
for the analysis.

As shown in Fig. 2, the feature representation algorithm IFFR
shows excellent performance with the Alternate Dataset, the
PDB1075 Dataset and the Independent 2 Dataset, and its average
performance is superior to those of the other algorithms (PsePSSM,
PseAAC and AAC). For all the datasets, the IFFR usually has a small
standard deviation; this finding indicates that to some extent,
the IFFR is not sensitive to the random composition of the train-
ing set, and thus, the proposed algorithm is more robust. With
the Independent 1 Dataset, the feature representation algorithm
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PsePSSM also demonstrates good performance and is significantly
better than PseAAC and AAC. Because both IFFR and PsePSSM use
evolutionary information, the results therefore suggest that the
evolutionary information in PSSM is more abundant and more
important than the information contained in the sequence itself.
Therefore, prediction performance can be improved by considering
evolutionary information. In conclusion, our feature representa-
tion, IFFR, shows superior performance with four independent
datasets than three state-of-the-art algorithms (PsePSSM, PseAAC
and AAC).

In summary, as shown in Table 3 and Fig. 2, the recognition
rate of the dual-source IFFR based on physicochemical proper-
ties and evolutionary information is higher than the recognition
rates achieved by single-source feature representation algorithms
such as CovPCSM, CovPSSM and AAC. IFFR also achieves a higher
recognition rate than other dual-source (or combined) fusion al-
gorithms such as CFFR, PseAAC and PsePSSM. These experimen-
tal results show the existence of interaction effects between the
physicochemical properties and evolutionary information of DNA-
binding proteins and demonstrate that the recognition rate can be
improved by using these implicit features and considering their
interaction effects. Thus, our IFFR depicts explicit and implicit
features simultaneously and can more fully mine the information
hidden in a protein sequence. This result validates Hypothesis 1.

3.3. Sensitivity analysis of parameter and comparison of models

In this section, we discuss the parameter selection problem in
themulti-source fusion feature representationmodel and examine
the sensitivity of the parameter λ, i.e., the effect of different gap
distances λ on the results obtained within the framework of the
proposedmodel. To ensure the reproducibility of the experimental
results and their subsequent comparability, we continue to use the
Jackknife validationmethod and linear kernel SVM classifier in our
analysis.

We conduct comparisons using the same four independent
datasets and the Jackknife validation method while varying the
algorithm parameter λ (gap distance) continuously from 1 to L− 1
(L is the length of the protein sequence) andobserve the differences
in the results obtained using three different algorithms (GapPSSM,
GapCFFR and GapIFFR). The results in terms of MCC are shown in
Fig. 3.

As shown in Fig. 3, the fluctuation of the performance curve is
relatively large, and the gap distance (parameter λ) has a signif-
icant effect on the performance of the classifier, which indicates
that the recognition rate is sensitive to parameter λ. For different
datasets, the influence of parameter λ on the prediction results dif-
fers, and the values of parameter λ that yield the best performance
also differ among the datasets. For example, for the Alternate
Dataset, the three algorithms achieve the optimalMCCvalue atλ =
2, and a short-range interaction was observed between residues
at the corresponding positions, i.e., contact between residues. For
the Independent 2 Dataset, the maximum MCC value is obtained
at λ = 12, indicating that a remote interaction between residues
at the corresponding position (i.e., contact between residues). Sim-
ilarly, the three performance curves show consistent fluctuations
because all three algorithms consider information of gap distances,
i.e., the interaction of residue pairs corresponding to different λ

values; therefore, the algorithms show a consistent trend in their
fluctuations. Fig. 3 also shows that the performance of the triple-
source interaction fusion algorithm GapIFFR is better than that
of the combined fusion algorithm GapCFFR and that of the dual-
source fusion algorithm GapPSSM.

To strengthen the credibility of the results, we also analyze
the statistical significance of the Jackknife results in terms of four
indicators (MCC, ACC, SE and SP) to determine whether there are

significant differences in the results obtained using three algo-
rithms. Specifically, we use both parametric and nonparametric
statistical tests (the paired t-test and the Wilcoxon signed rank
test) to determine whether there are significant differences in pre-
diction performance among the different feature representation
methods. Because the prediction performance of these methods
was measured using the same training and test sets, i.e., there are
no differences in the random compositions of the sample sets, any
differences revealed by the paired statistical tests can be attributed
to a difference in the algorithms.

Table 4 shows the results of the comparisons. For GapPSSM
(GapCFFR) and GapIFFR, with the exception of the SE index ob-
tained with the Independent 2 Dataset, the p-values of the paired
tests for the four performance indices across all datasets were less
than the significance level of 0.05. This finding suggests that the
prediction performances of these three algorithms are significantly
different; specifically, the prediction performance of GapIFFR is
significantly better than those of GapPSSM and GapCFFR, and this
finding was obtained with the four datasets. In contrast, there
was no statistically significant difference in the SE index obtained
with the Independent 2 Dataset. Thus, the feature representation
obtained with GapIFFR is significantly better than that of the other
two algorithms studied. This result indicates thatwithin the frame-
work of IFFR models, the triple-source fusion GapIFFR method is
significantly better than the dual-source fusion GapPSSM. GapIFFR
is also significantly superior to the combined fusion feature repre-
sentation GapCFFR. This result validates Hypothesis 2.

3.4. Evaluation of selective ensemble based on parameter perturba-
tion

In this experiment, we discuss the selective ensemble based
on different gap distances λ, that is, we perturb parameter λ

to generate different input feature subspaces and then construct
different base classifiers to enhance the generalization ability of
the integrated learner. To ensure the comparability of the exper-
imental results, we again use the Jackknife validation method.
Assuming that the protein dataset has N sequences, each of these
sequences is used as a sample to be tested, and the remaining N−1
protein sequences are divided using the K-fold CV (K = 10 in this
study); of these, (K − 1)-fold sequences are used as the training
set ((K − 1)/K × (N − 1) samples) for model training, and 1-fold
sequences are used as the validation set (1/K × (N − 1) samples)
for selection (pruning) to determine the structure of the integrated
learner.

To save space, we select only the MCC for the comparison be-
cause this index can better reflect the generalization ability of the
learner; the other indicators can be used for similar analyses. The
four datasets are used in the experiments to compare the perfor-
mance of the proposed selective ensemble algorithm GapIFFR-SE
(here, k is directly set to 3) with those of the IFFR (as a benchmark
algorithm) and the GapIFFR. The results are shown in Fig. 4.

We used the MCC value of the IFFR algorithm as the baseline
(dotted black line), and as shown in Fig. 4, for each dataset, some
columns of the histogram exceed the dotted black lines and appear
above the baseline. This finding suggests that certain parameters λ

in GapIFFR yieldMCC index values that exceed the baseline (dotted
black line). In addition, based on the distribution of the histogram,
the class discrimination ability of feature vectors corresponding
to different λ values is quite different (performance boundary of
the algorithm), and this is due to the presence of residue pairs in
the amino acid sequence that interact with each other, i.e., contact
between residues. Residue interactions can be divided into short-
range interactions and remote interactions, and remote interac-
tions play an important role in determining the overall structural
framework. For all datasets except the Independent 1 Dataset,
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Fig. 2. Comparison of IFFRwith existing state-of-the-art feature representation algorithms (AAC, PseAAC and PsePSSM) using four independent datasets. (30 random results
of 10-fold CV, base classifier: linear SVM).

Table 4
Statistical significance of the performance differences between algorithms.
Dataset Evaluation GapPSSM vs. GapIFFR GapCFFR vs. GapIFFR

Indices Paired T-test Signed-rank test Paired T-test Signed-rank test

Alternate MCC (−) 1.353× 10−20 (−) 7.557× 10−10 (−) 1.018× 10−19 (−) 7.557× 10−10

Dataset ACC (−) 2.756× 10−20 (−) 7.513× 10−10 (−) 5.259× 10−19 (−) 7.977× 10−10

SE (−) 2.502× 10−8 (−) 6.470× 10−7 (−) 4.528× 10−14 (−) 2.710× 10−9

SP (−) 1.624× 10−15 (−) 2.159× 10−9 (−) 3.492× 10−12 (−) 2.056× 10−8

PDB1075 MCC (−) 2.753× 10−13 (−) 3.775× 10−9 (−) 0.0016 (−) 0.0026
Dataset ACC (−) 1.207× 10−13 (−) 4.657× 10−9 (−) 0.0013 (−) 0.0023

SE (−) 3.765× 10−13 (−) 5.556× 10−9 (−) 0.0037 (−) 0.0096
SP (−) 6.848× 10−7 (−) 2.244× 10−6 (−) 0.0248 (−) 0.0342

Independent 1 MCC (−) 3.390× 10−12 (−) 3.653× 10−7 (−) 2.585× 10−9 (−) 7.443× 10−7

Dataset ACC (−) 2.768× 10−12 (−) 3.444× 10−7 (−) 2.325× 10−9 (−) 6.871× 10−7

SE (−) 5.013× 10−11 (−) 3.495× 10−7 (−) 2.159× 10−8 (−) 4.131× 10−6

SP (−) 5.993× 10−5 (−) 1.278× 10−4 (−) 6.478× 10−4 (−) 8.413× 10−4

Independent 2 MCC (−) 0.0045 (−) 0.0064 (−) 0.0170 (−) 0.0264
Dataset ACC (−) 0.0067 (−) 0.0092 (−) 0.0202 (−) 0.0322

SE (=) 0.0994 (=) 0.0810 (=) 0.1160 (=) 0.1247
SP (−) 0.0011 (−) 0.0018 (−) 0.0202 (−) 0.0232

Here, (−) implies that the second algorithm is statistically better than the first one, (=) means that the two algorithms show no significant differences between them, and
the p-values are given.

Table 5
Comparison of the performances of various methods with a testing dataset containing 92 DNA-binding
proteins and 100 non-DNA-binding proteins.
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Fig. 3. Comparison of the performances of GapPSSM, GapCFFR, and GapIFFR, showing the effect of parameter λ on the results. (Jackknife, classifier: linear SVM).

Table 6
Comparison of the performances of various methods with the PDB1075 dataset
(Jackknife test).
Methods Evaluation indices

ACC (%) MCC SE (%) SP (%)

iDNA-Prot|dis [32] 77.30 0.54 79.40 75.27
PseDNA-Pro [33] 76.55 0.53 79.61 73.63
iDNA-Prot [12] 75.40 0.50 83.81 64.73
DNA-Prot [34] 72.55 0.44 82.67 59.76
DNAbinder (dimension= 400) [10] 73.58 0.47 66.47 80.36
DNAbinder (dimension= 21) [10] 73.95 0.48 68.57 79.09
iDNAPro-PseAAC [22] 76.56 0.53 75.62 77.45
Kmer1+ AAC [19] 75.23 0.50 76.76 73.76
Local-DPP (n= 3, lambda= 1) [25] 79.10 0.59 84.80 73.60
Local-DPP (n= 2, lambda= 2) [25] 79.20 0.59 84.00 74.50
Proposed method (k= 3) 79.91 0.61 87.43 72.73

the maximum MCC value corresponds to a λ value greater than
1, i.e., there is contact between non-adjacent residues in these
three datasets. For example, a remote interaction is found in the
PDB1075 Dataset (λ = 23) and in the Independent 2 Dataset
(λ = 12). In fact, it is precisely because of this spatial information
(gap distance) that the feature vector generated by Algorithm 1
exhibits stronger class discriminating ability.

The solid black line in Fig. 4 corresponds to the MCC value of
Algorithm 2, GapIFFR-SE. As shown in the figure, the performance
of the proposed selective ensemble classification algorithm is sig-
nificantly improved due to the existence of polypeptide chain folds
in the protein and potentially multiple pairs of residue contacts
in the corresponding amino acid sequence (i.e., several different
λ values). Therefore, the motivation of the selective ensemble
algorithm is to find a set of potential λ values. As shown in Fig. 4,
there aremultiple differentλ values for all datasets, and these yield
higher MCC values. For example, there are three different λ values
(λ = 23, 18, and 6) in the PDB1075 Dataset, and Algorithm 2
can capture these λ values, perform classification prediction using
these generated feature spaces, and perform a majority vote for
these prediction results. As a result, GapIFFR-SE showed better
overall classification performance.

3.5. Further comparison with current methods

For a further comparison of feature representationmethods, we
use the HoldOut method to evaluate the performance of feature
representation models with a different dataset (the training and
test sets are described in separate studies in the literature). We
generate features using a given training set and train the classifiers
with the resulting feature space. The classification model is then
verified with the corresponding feature space of the given test
set, and the recognition rate of the classifier is used to indirectly
evaluate the performance of the different feature representations.
Table 5 shows the experimental results obtainedwith the different
feature representation methods (CovPCSM, CovPSSM, CFFR and
IFFR) in the proposed model framework and with three state-of-
the-art feature representation algorithms (PsePSSM, PseAAC and
AAC) for the test set. Table 5 shows that CFFR achieves maximum
values of the three evaluation indices ACC,MCC and AUC of 87.50%,
0.7562 and 0.9297, respectively. However, we are more interested
in identifying the positive cases (DNA-binding proteins). The SE
index shows that the SE values obtained for the PsePSSM and
IFFR are higher than 80%; these two algorithms identify 77 and 74
positive cases, respectively, from their confusionmatrices.We also
note that the smaller number of support vectors (nSV) used by the
classifier (LinearSVM) indicates that the classification model has
better generalization capabilities. A comprehensive comparison
reveals that the feature representation IFFR demonstrates better
performance, with an MCC index of 0.7204, 74 recognized positive
cases, and the smallest number of support vectors in the classifi-
cation model. These findings also demonstrate the validity of IFFR
to some extent. In contrast, the feature representation PsePSSM
shows the highest SE index (SE = 83.70%) but also exhibits a low
specificity index SP and a non-ideal MCC. This phenomenon is also
consistent with the results shown in Fig. 2.

For further comparison of the prediction methods, we com-
pare the proposed selective ensemble predictionmethod, GapIFFR-
SE, with other prediction methods using the benchmark dataset
PDB1075. Eight state-of-the-art methods are used in the compar-
ison: iDNA-Prot|dis [39], PseDNA-Pro [33], iDNA-Prot [12], DNA-
Prot [34], DNAbinder [10], iDNAPro-PseAAC [22], Kmer1+AAC [19]
and Local-DPP [25]. The comparison results based on Jackknife
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Fig. 4. Comparison of the performances of different algorithms. The effects of parameter λ on the MCC (histogram) of the GapIFFR (IFFR is used as the baseline, black dotted
line) are compared to those of the selective ensemble (GapIFFR-SE, black solid line). (Jackknife test).

validation are shown in Table 6. Our selective ensemble algorithm,
GapIFFR-SE, exhibits the best prediction performance among the
compared methods, with a maximal recognition rate of 79.91%, a

maximal MCC value of 0.61, and amaximal SE value of 87.43. Thus,
compared with existing methods, the proposed method demon-
strates superior performance. This finding indirectly indicates that
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Table 7
Values of six physicochemical properties for each amino acid.
Amino acid Physicochemical index

Hydrophobicity Hydrophilicity Mass pK1(α-COOH) pK2(NH3) pI(25 ◦C)
Q (1) Q (2) Q (3) Q (4) Q (5) Q (6)

A Ala 0.62 −0.5 15 2.35 9.87 6.11
C Cys 0.29 −1.0 47 1.71 10.78 5.02
D Asp −0.9 3.0 59 1.88 9.60 2.98
E Glu −0.74 3.0 73 2.19 9.67 3.08
F Phe 1.19 −2.5 91 2.58 9.24 5.91
G Gly 0.48 0.0 1 2.34 9.60 6.06
H His −0.40 −0.5 82 1.78 8.97 7.64
I Ile 1.38 −1.8 57 2.32 9.76 6.04
K Lys −1.50 3.0 73 2.20 8.90 9.47
L Leu 1.06 −1.8 57 2.36 9.60 6.04
M Met 0.64 −1.3 75 2.28 9.21 5.74
N Asn −0.78 0.2 58 2.18 9.09 10.76
P Pro 0.12 0.0 42 1.99 10.60 6.30
Q Gln −0.85 0.2 72 2.17 9.13 5.65
R Arg −2.53 3.0 101 2.18 9.09 10.76
S Ser −0.18 0.3 31 2.21 9.15 5.68
T Thr −0.05 −0.4 45 2.15 9.12 5.60
V Val 1.08 −1.5 43 2.29 9.74 6.02
W Trp 0.81 −3.4 130 2.38 9.39 5.88
Y Tyr 0.26 −2.3 107 2.20 9.11 5.63

the IFFR method proposed in our study can generate features that
carry strongly discriminative information and that the use of a
selective ensemble can further enhance the generalization ability
of ensemble learning, ultimately ensuring the accurate prediction
of DNA-binding proteins.

4. Conclusion

The prediction of protein structure and function from protein
sequences (primary structures) using machine learning methods
is currently a popular and important topic in research, particularly
in bioinformatics research. The development of methods that can
be used to adequately and effectively express feature information
from sequence data is currently a focus of the field. For protein
sequences, the AAC, polypeptide composition (adjacent residues),
PseAAC (non-adjacent residues), physicochemical properties and
evolutionary information are commonly used to generate explicit
features and to combine these feature vectors. The use of this type
of CFFR can achieve good results.

In this paper, we propose a feature representation algorithm
with multi-source interaction fusion. The basic principle of this
method is that it considers the interaction effects among different
physicochemical properties, evolutionary information, and local
position information between different amino acid residues in pro-
tein sequences. Experimental data demonstrate that the feature-
level fusion of physicochemical properties, evolutionary informa-
tion and position information between non-adjacent residues from
the perspective of interactions can significantly improve the pre-
diction of DNA-binding proteins. The fact that the generated fea-
ture vector demonstrates better performance in recognizing DNA-
binding proteins indicates that our feature representation algo-
rithm can mine the potential information hidden in a protein se-
quence. Furthermore, the parameters of the feature representation
algorithm can be perturbed to generate different input feature sub-
spaces. The selective ensemble algorithm improves the generaliza-
tion ability of the ensemble classifier by obtaining differential clas-
sifiers via selection (pruning). The proposed model and algorithms
are mathematical descriptions based on specific biological prob-
lems but are nonetheless universal, and the analytical methods
described in this paper can be applied to other questions related to
protein structure and function prediction. Due to its applicability to
the in-depth analysis of proteins and for aiding the understanding
of frontier issues, our method is of some significance to the field of
bioinformatics.
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Appendix A

The NCBI non-redundant database (ftp://ftp.ncbi.nlm.nih.gov/
blast/db/) should first be downloaded.

A query protein sequence can then be obtained by setting pa-
rameter E to 0.001 (evalue= 0.001) and the number of iterations to
3 (num_iterations = 3). The NR protein database is then searched
for this sequence using PSI-BLAST.

Finally, a 20-dimensional vector representing the probabilities
of conservation against mutations to 20 different amino acids,
including itself, is returned. The matrix consisting of such vector
representations for all residues in a given sequence is called the
position-specific SM (PSSM) [18].

Appendix B

See Table 7.
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