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Computational Methods for Remote Homolog Identification

Xiu-Feng Wan' and Dong Xu”

Digital Biology Laboratory, Department of Computer Science, University of Missouri - Columbia, Columbia, MO

65211, USA

Abstract: As more and more protein sequences are available, homolog identification becomes increasingly important for
functional, structural, and evolutional studies of proteins. Many homologous proteins were separated a very long time ago
in their evolutionary history and thus their sequences share low sequence identity. These remote homologs have become a
research focus in bioinformatics over the past decade, and some significant advances have been achieved. In this paper,
we provide a comprehensive review on computational techniques used in remote homolog identification based on differ-
ent methods, including sequence-sequence comparison, and sequence-structure comparison, and structure-structure com-
parison. Other miscellaneous approaches are also summarized. Pointers to the online resources of these methods and their
related databases are provided. Comparisons among different methods in terms of their technical approaches, their
strengths, and limitations are followed. Studies on proteins in SARS-CoV are shown as an example for remote homolog

identification application.

Keywords: Remote homolog, homolog identification, evolution, sequence analysis, sequence profile, threading.

1. INTRODUCTION
1.1 Why Remote Homolog is Important

Homolog identification is becoming more and more im-
portant in modern biology. Traditional biological studies
have been focused extensively on model systems, and these
studies provide tremendous resources to investigate other
species. The most used model systems include E. coli, bud-
ding yeast (Saccharomyces cerevisiae), fission yeast
(Schizosaccharomyces pombe), Caenorhabditis elegans,
Drosophila melanogaster, zebrafish (Danio rerio), Arabi-
dopsis thaliana, and mouse (Mus musculus) [1]. Most of the
biological knowledge that has been accumulated so far is
related to these model organisms. A convenient way to study
the functions and structures of a new gene is to identify ho-
mologs (evolutionary relationships) in model organisms,
from which one can infer structure, function and mechanism
of the new gene. Such an approach becomes very popular
nowadays, given the surge in biological sequence data due to
the breakthroughs in large-scale sequencing technologies and
various genome projects.

Homolog identification can be conducted through com-
putationally matching a query sequence to similar sequences
in the database. However, this matching process is not trivial
since two homologous proteins could have been separated a
very long time ago in their evolutionary history and thus
their evolutionary relationship may be very difficult to de-
tect. Such distantly related proteins are called remote ho-
mologs. A large proportion, typically 30-40% of the pre-
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dicted protein coding genes do not have specific function
assignments since we cannot relate these proteins to any
protein with known function in the database. This is the case
even in well-studied model organisms. For example, at pre-
sent, 2,280 genes out of 6,324 genes in budding yeast S. cer-
evisiae (The Gene Ontology Consortium, 2000;
http://www.geneontology.org) have not been annotated with
any functions. Many of these “unknown” genes probably
have remote homologs whose functions are well character-
ized. The existing methods for detecting homology relation-
ships via sequence similarity might fail since their amino
acid sequences have diverged so much.

2.1 Homology and Evolution

When two genes are evolutionarily related (i.e., de-
scended from a common ancestor), they are called homologs.
A homolog may be categorized into ortholog, paralog or
xenolog based on different evolutionary events (Fig. 1A) [2].
Orthologs are homologs that diverged after speciation
events, paralogs are homologs that diverged after gene du-
plication events, and xenologs are homologs that diverged
after lateral (horizontal) gene transfer events [3]. Although
homologs only indicate their evolutionary relationship and
may not have the same function, the homolog categorization
may facilitate function prediction. For instance, orthologs
typically preserve the gene functions. In contrast, paralogs
and xenologs often have related/overlapping but no identical
biological functions because gene duplications and horizon-
tal transfer are frequently accompanied by functional diver-
gence [4,5]. In general, homologs have similar protein
structures, but vice versa are not true. Proteins sharing simi-
lar structures but without detectable evolutionary/functional
relationship are called analogs.

The evolutionary relationship between genes is compli-
cated. The evolutionary connection can go beyond the one-

© 2005 Bentham Science Publishers Ltd.
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to-one relationship and have mixed homology. As shown in
(Fig. 1B), a new protein may have multiple domains sharing
homology to the domains of different proteins. This phe-
nomenon happens frequently when domains are duplicated,
inserted, or permuted [6]. They can make the remote homol-
ogy detection even more challenging and lead to misleading
computational results. Some computer packages were spe-
cially designed to handle such cases, e.g., DIVCLUS, which
detects families of duplication modules from a protein se-
guence database [7]. Some databases use domains as a basis
to study the homologous relationship between proteins, e.g.
PRODOM [8].

1.3 Challenges and Progresses in Remote Homolog Iden-
tification

A major challenge for computational identification of
remote homolog is the low signal-to-noise ratio. Since re-
mote homologs were separated through a long evolutionary
history, similarity due to convergence is generally limited to
small regions of genes (signal) and other parts of sequences
were diverged too much to have any relationship (noise).
When aligning whole sequences or even just domains, most
parts of the sequences are forced to align together so that the
noise buries the signal. Hence, remote homologs typically
cannot be identified through straightforward pairwise se-
quence comparison using tools such as BLAST [9] or
FASTA [10].

In the past ten years or so, active research has been car-
ried out for remote homolog identification, and some signifi-
cant advances have been achieved. Although most of the
available methods utilize the information contained within
the alignments of multiple closely related sequences (se-
quence profiles), protein structure prediction and structure-
structure comparison also became a useful tool for identifi-
cation of remote homologs as the protein three-dimensional
structure is more conserved than sequence [11,12]. Mutation,
insertion or deletion of residues in the sequence often still
maintains the structure and function of a protein (e.g. an en-
zyme domain may have a similar structure but diverse se-
quences). In general, methods for remote homolog identifi-
cation can be grouped into four categories based on signal
retrieval techniques: (1) sequence-sequence comparison, (2)
sequence-structure comparison, (3) structure-structure com-
parison, and (4) other methods that do not depend on protein
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sequence or structure (e.g., using gene location in the ge-
nomic sequence or microarray data).

Here, we provide a comprehensive review for currently
available remote homolog identification methods based on
these four categories. Section 2 introduces the methods
based on protein sequence-sequence comparison. Section 3
focuses on the methods using sequence-structure compari-
son, i.e., the threading method. Section 4 discusses other
computational methods that do not rely on protein sequence
for remote homolog identification. The comparisons among
different methods will be summarized in section 5. Section 6
illustrates the remote homolog identification by using the
example of SARS-CoV. This paper ends with some discus-
sions in Section 7. Box 1 collects some frequently used re-
sources for remote homolog identification. The tools and
databases listed here are by no means comprehensive; espe-
cially since many new tools/databases are being generated.
The collection only provides a sampling for the types of re-
sources that a user may find.

2. SEQUENCE-SEQUENCE COMPARISON METH-
ODS

The major methods for remote homolog identification are
based on sequence-sequence comparison since a protein se-
quence encodes all the information related to its structure
and function. Comparing protein sequences through pairwise
alignments often provides the most straightforward relation-
ship between the proteins. Sophisticated methods in identi-
fying remote homologs, such as threading, are often based
on the sequence profile resulted from searching a query se-
quence against a sequence database. The comparison of the
advantages and disadvantages of these methods are shown in
Table 1.

2.1 Pairwise Sequence Comparison

Using dynamic programming [13,14], pairwise sequence
alignment can retrieve the optimal match between two query
sequences based on a selected substitution matrix, which
defines the weight for substitution of the amino acid type i
with j. The substitution matrix is essential for the pairwise
sequence alignment to identify the true homolog. During the
past several decades, many substitution matrices have been
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Fig. (1). Evolutionary relationship among proteins. A. Gene homologs; B. Gene recombination.
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Box 1. Remote Homolog Identification Resources
Tool or Database Name Functionality summary URL Reference
GENERAL DATABASE
Comprehensive Microbial Repository | A comprehensive microbial resource http://www.tigr.org/tigr- 175
(CMR) scripts/ CMR2/CMRHomePage.spl
DDBJ DNA Data Bank of Japan http://www.ddbj.nig.ac.jp/ 176
Evolutionary Lineage Inferred from An online database that combines functional annotation with struc- | http://romi.bu.edu/elisa 177
Structural Analysis (ELISA) ture and sequence homology modeling to place proteins into se-
quence-structure-function "neighborhoods"
GeneCards A database of human genes, their products and their involvement in | http://bioinfo.weizmann.ac.il/cards/ 178
diseases.
Gene Ontology (GO) Consortium GO provides three structured networks of defined terms to describe | http://www.geneontology.org 179
gene product attributes, i.e., biological process, molecular function
and cellular component
Genome Channel A genome annotation and visualization resource http://compbio.ornl.gov/channel/ 180
KEGG A suite of databases and associated software, integrating information | http://www.genome.ad.jp/kegg/ 181
related to molecular interaction networks, pathways, and gene func-
tion
Mouse Genome Informatics (MGI) data- | Provides integrated access to data on the genetics, genomics, and http://mouseblast.informatics.jax.org/ 182
base biology of the laboratory mouse.
owL non-redundant composite of 4 publicly-available primary sources: http://Jumber.sbs.man.ac.uk/dbbrowser/OWL/ 183
SWISS-PROT, PIR (1-3), GenBank (translation) and NRL-3D.
PIR a comprehensive database for protein sequence searching http://pir.georgetown.edu 184
and protein classification
Plasmodium database A plasmodium genome resource http://plasmodb.org/ 185
PRF A protein sequence database http://www.genome.ad.jp/htbin/www_bfind?prf 181
PDB The single worldwide repository for the processing and distribution | http://www.rcsb.org/pdb/ 82
of 3D biological macromolecular structure data.
STACK Comprehensive representation of the human expressed genes http://www.sanbi.ac.za/Dbases.html 186
SwissProt A curated protein sequence database with extensive information http://www.expasy.ch/sprot/sprot-top.html Error!
collected from the literature Bookmark
not de-
fined.
SYSTERS Large-scale protein clustering based on sequence similarity http://systers.molgen.mpg.de/ 187
TAIR An Arabidopsis resource http://www.arabidopsis.org/ 188
TIGR Gene Indices A comprehensive resource for various genomes http://www.tigr.org/tdb/tgi/ 189
UniGene automatically partitioning sequences into a non-redundant set | http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db= 190
of gene-oriented clusters. unigene
Worm database Genomic information related to C. elegans http://www.wormbase.org 191
Yeast database molecular biology and genetics of the yeast Saccharomyces cere- http://www.yeastgenome.org/ 192
visiae
PROTEIN FAMILY CLASSIFICATION
AARSDB An aminoacyl-tRNA synthetases database http://rose.man.poznan.pl/aars/ 193
AraC/XyIS database A database on a family of helix-turn-helix transcription factors from | http://www.eez.csic.es/arac-xyls/ 194
bacteria
ASPD A curated database of selected proteins and peptides from random- | http://wwwmgs.bionet.nsc.ru/mgs/gnw/aspd/ 195
ized pools.
BLOCKS The highly conserved regions in groups of proteins represented in the | http://www.psc.edu/general/software/packages/bloc 99
PROSITE database ks/blocks.html
CATH Protein structure classification http://www.biochem.ucl.ac.uk/bsm/cath/ 83
COG Phylogenetic classification of proteins encoded in complete genomes | http://www.ncbi.nlm.nih.gov/COG/ 196
CSDBase An interactive database for cold shock domain http://www.chemie.uni-marburg.de/~csdbase/ 197
DIVCLUS A protein sequence domain clustering program http://www.mrc-Imb.cam.ac.uk/ ge- 7
nomes/divclus_home.html
DOMO A protein domain database http://www.infobiogen.fr/services/domo/ 198
EF-hand CaBP An collection of EF-hand calcium-binding proteins http://structbio.vanderbilt.edu/cabp_database/ 199
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(Box 1) contd....
Tool or Database Name Functionality summary URL Reference
ENZYME A repository of information relative to the nomenclature of enzymes | http://us.expasy.org/enzyme/ 200
FSSP Database of families of structurally similar proteins ftp://ftp.embl- 84
heidelberg.de/pub/databases/protein_extras/fssp/
GPCRDB (receptors) An information system for G protein-coupled receptors http://www.gpcr.org/7tm/ 201
Homeobox Page A collection of information relevant to homeobox genes http://www.biosci.ki.se/groups/tbu/homeo.html 202
InterPro An integrated resource of protein families, domains, and functional | http://www.ebi.ac.uk/interpro/ 203
sites created to handle the data from various protein family sites such
as PROSITE, Pfam, PRINTS, ProDom, SMART and TIGRFAMs
into a single, comprehensive resource
MEROPS (peptidase) An information resource for peptidases http://merops.sanger.ac.uk/ 204
MHCPEP (peptides) A database of MHC binding peptides http://wehih.wehi.edu.au/mhcpep/ 205
Nuclear Protein Database (NPD) A searchable database of information on proteins that are localised to | http://npd.hgu.mrc.ac.uk/ 206
the nucleus of vertebrate cells
O-GlycBase Collections of experimentally verified O- or C-glycosylation site http://www.cbs.dtu.dk/databases/OGLY CBASE/ 207
Pfam A large collection of multiple sequence alignments and hidden http://pfam.wustl.edu/ 208
Markov models covering many common protein domains and fami-
lies.
Protein Kinase Resource (PKR) A resource for the protein kinase family of enzymes http://pkr.sdsc.edu/ 209
RNase P A compilation of RNase P sequences http://www.mbio.ncsu.edu/RNaseP/home.html 210
PRINTS A compendium of protein fingerprints http://Jumber.sbs.man.ac.uk/dbbrowser/PRINTS/ 112,113
PROCAT A database of 3D enzyme active site templates http://www.biochem.ucl.ac.uk/bsm/PROCAT/PRO 109
CAT.html
ProClass A non-redundant protein database organized according to family http://pir.georgetown.edu/gfserver/proclass.html
relationships
PRODOM A comprehensive set of protein domain families automatically gen- | http://protein.toulouse.inra.fr/prodom/current/html/h 8
erated from the SWISS-PROT and TrEMBL sequence databases ome.php
PROSITE Database of protein sequence motifs http://au.expasy.org/prosite/ 110, 111
SBASE A support vector machines domain prediction system http://hydra.icgeb.trieste.it/~kristian/SBASE/ 212
Sentra A database of sensory signal transduction proteins http://www-wit.mcs.anl.gov/sentra/ 213
SCOP A structural classification of proteins database for the investigation | http://scop.mrc-lmb.cam.ac.uk/scop/ 85
of sequences and structures
Tumor Gene A resource for cancer-causing mutations; proto-oncogenes and tumor | http://condor.bcm.tmc.edu/oncogene.html 214,215
supressor genes
TSGDB A resource for tumor suppressor genes http://www.cise.ufl.edu/~yy1l/HTML- 216
TSGDB/Homepage.html
VIDA A collection of homologous protein families derived from open http://www.biochem.ucl.ac.uk/bsm/virus_database/ 217
reading frames from complete and partial virus genomes. VIDA .html
Whnt gene Homepage A family of highly conserved secreted signaling molecules that http://www.stanford.edu/~rnusse/wntwindow.html 218
regulate cell-to-cell interactions during embryogenesis
Pairwise comparison
BLAST Basic local alignment search tool http://www.ncbi.nlm.nih.gov/blast/ 9
FASTA Compares a protein sequence to another protein sequence or to a http://fasta.bioch.virginia.edu/ 10
protein database, or a DNA sequence to another DNA sequence or a
DNA library
WU-BLAST Basic local alignment search tool developed by Washington Univer- | http://blast.wustl.edu 25
sity at St. Louis
Sequence-profile comparison
FPS A method for scoring a query sequence against a family of sequences | http://fps.sdsc.edu/ 40
HMMER Profile hidden Markov model for remote homolog identification http://hmmer.wustl.edu/ 33
IMPALA A program that searches a protein query sequence against a multiple |http://blocks.fhcrc.org/blocks/impala.html 28
alignment database represented as a collection of PSI-BLAST
checkpoint files
META-MEME A software toolkit for building and using motif-based hidden Markov | http://metameme.sdsc.edu/ 35

models of DNA and proteins
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(Box 1) contd....

Tool or Database Name Functionality summary URL Reference
PSI-BLAST Iterated profile search methods http://www.ncbi.nlm.nih.gov/BLAST/ 25
SAM A collection of flexible software tools for creating, refining, and http://www.cse.ucsc.edu/research/compbio/sam.htm 34
using linear hidden Markov models for biological sequence analysis ||
Profile-profile comparison
COACH HMM-HMM comparison http://www.drive5.com/lobster 46
COMPASS Multiple alignment vs. Multiple alignment comparison ftp://iole.swmed.edu/pub/compass/ 44, 45
FFAS Multiple alignment vs. Multiple alignment comparison http://ffas.ljcrf.edu/ffas-cgi/cgi/documentn.pl? 219
FORTE Multiple alignment vs. Multiple alignment comparison http://mbs.cbrc.jp/htbin/forte-cgi/forte_form.pl 48
HHsearch HMM-HMM comparison http://protevo.eb.tuebingen.mpg.de/cgi- 47
bin/download/download.pl?NOW_DIR=/cluster/dat
a/download/HHsearch
HMAP applying sequence, secondary and tertiary information in protein http://honiglab.cpmc.columbia.edu/hmap/ 49
structures into profiles for remote homolog identification
LAVA Block vs. Block search http://blocks.fherc.org/blocks-bin/LAMA_search.sh 220
PROF_SIM Multiple alignment vs. Multiple alignment comparison Unavailable 41
SP3 Fold recognition using structural-derived sequence profile-profile http://theory.med.buffalo.edu/ 50
method
Other sequence-sequence comparison
PropSearch Incorporating information from the amino acid composition instead, |http://abcis.cbs.cnrs.fr/propsearch/propsearch.html 68
molecular weight, content of bulky residues, content of small resi-
dues, average hydrophobicity, average charge, and other protein
properties (totally 114)
Protein Hydrophilicity/Hydrophobicity | Tools for plotting, comparing and searching a library for similarities, | http://bioinformatics.weizmann.ac.il’hydroph/ 67
Search and Comparison Server of a protein's hydropathy profile
T-HMM Incorporating phylogenetic information into the HMM Unavailable 52,53
STRUCTURE-BASED METHODS
123D Comparison and recognition of protein structures http://123d.ncifcrf.gov/ 88
3D-PSSM A tool for protein threading http://www.shg.bio.ic.ac.uk/~3dpssm/ 221
CE Protein structure comparison tool http://cl.sdsc.edu/ce.html 120
DALI Protein structure comparison tool http://www.ebi.ac.uk/dali/ 119
FUGUE A tool for protein threading http://www-cryst.bioc.cam.ac.uk/~fugue/ 222
Genomic Threading Database Contain structural annotations for the genomes of over 100 recently | http://bioinf.cs.ucl.ac.uk/GTD 223
sequenced organisms
GenTHREADER A tool for protein threading http://bioinf.cs.ucl.ac.uk/psipred/ 170
ORFeus Hybrid threading approaches http://Biolnfo.PL/Meta/ 224
PROSPECTOR A tool for protein threading http://www.bioinformatics.buffalo.edu/new_buffalo/ 225
services/threading.html
PROSPECT A threading-based protein structure prediction system http://compbio.ornl.gov/structure/prospect/ 98
ProteinDBS Protein global-to-global tertiary structure matching http://proteindbs.rnet.missouri.edu/ 121
RAPTOR A threading-based protein structure prediction system http://www.bioinformaticssolutions.com/products/ra 99
ptor.php
SAS A tool to bridge the gap between protein sequence and structural http://www.biochem.ucl.ac.uk/bsm/sas 91
analysis.
TOPITS A tool for protein threading http://cubic.bioc.columbia.edu/predictprotein/ 90
UCLA-DOE Structure Prediction Server |An integration tool for BLAST, PSI-BLAST, PSI-PRED, SDP, and | http://fold.doe-mbi.ucla.edu/ 86
DASEY

constructed. Generally, these matrices can be classified into
two groups: (1) the matrices generated empirically using
multiple sequence alignments, such as PAM [15], mPAM
[16], Gonnet [17], and JTT [18]; (2) the matrices generated
from blocks of local alignments in related proteins, such as

BLOcks SUbstitution Matrix (BLOSUM) [19], and Prob-
ability Matrix from Blocks (PMB) [20]. Relative to PAM,
BLOSUM was shown to improve the sensitivity and accu-
racy of the alignments significantly, especially for those se-
quences with a large divergence [19,20].
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Table 1.

Comparison of Sequence-Sequence Comparison Methods

Wan and Xu

Methods

Advantages

Disadvantages

pairwise sequence comparison

straightforward; with solid theoretical founda-
tion; fast

insensitive

sequence-profile comparison

more sensitive than pairwise sequence compari-
son

depends on whether the query sequence has many
close homologs

profile-profile comparison

up to 30% more sensitive than sequence-profile
comparison

higher computational cost; more false positives
predicted

phylogenetic analysis

directly related to evolutionary relationship

computationally expensive; higher possibility of
misleading results due to the complexity of
phylogenetic tree construction

other methods (intermediate sequence, secondary
structure, hydrophobicity profile, protein compo-

may improve the remote homology detection
sensitivity.

high false positive rates; no good method for
prediction confidence assessment

sition, frame-shift information, etc.)

The dynamic programming technique has been imple-
mented to achieve either local (e.g. BLAST) [9] or global
optimality (e.g. FASTA) [10]. However, different from Nee-
dleman-Wunsch [13] and Smith-Waterman [14] algorithms,
both BLAST and FASTA employ heuristic approaches to
identify the similarity between two query sequences [21]. As
a result, these two methods run much faster. However, nei-
ther BLAST nor FASTA can guarantee the optimal align-
ment. To compare the reliability of homolog identification,
the statistical assessment was integrated into pairwise se-
quence alignments [9,10,22-24]. For example, the Expecta-
tion Value (E-value) returned by BLAST reflects the reli-
ability of homologous relationship between two sequences.
Although remote homologs are often missed by pairwise
sequence alignment due to its insensitivity, this method is
typically the first step in the search for remote homologs.

Since the first development of the BLAST program, dif-
ferent versions of BLAST have been implemented. These
BLAST programs have also been integrated into different
online databases, which provide convenient tools, especial
for experimental biologists, who are mainly PC users. WU-
BLAST (http://blast.wustl.edu) [25] is the first BLAST
package with gapped alignments, and it is different from the
original version of gapless BLAST alignment [9], which is
usually called NCBI-BLAST. WU-BLAST is more sensitive
for remote homology identification but may be slower than
NCBI-BLAST when using the similar parameters. The WU-
BLAST Web servers are listed at http://blast.wustl.edu. For
instance, WU-BLAST2 server at the European Bioinformat-
ics institute (http://www.ebi.ac.uk/blast2/) is one of the most
frequently used ones [26]. The databases that use WU-
BLAST include not only general databases, such as the nr at
NCBI (ftp.ncbi.nlm.nih.gov), but also many specific data-
bases, such as the comprehensive microbial database at
TIGR (http:/ftigrblast.tigr.org/cmr-blast/), the mouse data-
base at Jackson Laboratory (http://mouseblast. informat-
ics.jax.org/), the yeast database at Stanford University
(http://seq.yeastgenome.org/cgi-bin/nph-blast2sgd), and the
plasmodium database at the University of Pennsylvania
(http://plasmodb.org/). The databases (protein, DNA, and

masking databases) available for BLAST searches are listed
at http://www.ch.embnet.org/software/blastdb_help.html.

2.2 Sequence-Profile Comparison
2.2.1. PSI-BLAST

A protein sequence profile (position specific weight ma-
trix), which is generated by aligning a group of closely re-
lated protein sequences, illustrates the probability of occur-
rence for each amino acid at each position of the multiple
sequence alignments. A sequence profile better reflects the
information from a protein family than a single sequence.
Thus, sequence-profile alignment is typically more sensitive
for remote homolog identification than pairwise sequence
alignment [27]. Popular sequence-profile alignment tools
include PSI-BLAST [25] and PSI-BLAST derived IMPALA
[28]. The challenge for sequence-profile alignment resides in
the selection of “closely” related sequences in the database
for the profile construction. Previous reports demonstrated
that the selection of the first query to initiate the profile
search affects that sequence-profile homolog identification
results [29].

2.2.2. Hidden Markov Model

Hidden Markov Model (HMM) illustrates the probability
distribution for a finite set of states. Each state will have an
associated transition or emission probability. The output will
be the joint probability for each state. However, the state is
not visible to an external observer, thus it is called Hidden
Markov Model. HMM can be first-order, second order, or m-
order HMM. The order of a HMM is the context length, and
the context will determine the probabilities of the next state.
For example, a state in second order HMM depends upon its
two previous states.

Profile Hidden Markov Models (HMMs) are among
those most powerful approaches for remote homolog identi-
fication. Unlike multiple sequence alignments in PSI-
BLAST, HMMs construct the profile based on HMM, which
contains a probability matrix for position transitions and an
emissions matrix for amino acid changes [30,31]. Due to
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complexity for profile construction, HMMs are at least 10
times slower than PSI-BLAST [32]. On the other hand,
HMM based approaches often have a better performance in
sensitivity than PSI-BLAST based approaches [32].
HMMER [33], SAM [34], and META-MEME [35] are the
ones used most frequently. Among these three models,
HMMER and SAM have been the most successful profile
HMMs. One report in 2002 showed HMMER is faster than
SAM but SAM is more sensitive for remote homology iden-
tification [34]. However, since then, both SAM and
HMMER have been updated. Other recent HMM based
methods for remote homolog identification include [36,37].

2.2.3. Other Sequence-Profile Comparison Methods

In order to avoid the loss of sensitivity and precision
from heuristic searches, Jumping Alignment (JA) algorithm
was developed based on the exhaustive searches as in Smith-
Waterman algorithm [38]. Different from the normal se-
quence-profile alignment, JA aligns a single protein se-
quence with multiple sequence alignments by aligning the
query sequence with each sequence in the multiple align-
ments whereas the profile approaches generally consider the
counts for each amino acid at each column. To resolve the
alignment, JA algorithm may jump from one reference to
another reference sequence, thus it is similar to fragment
based alignment methods, such as DIALIGN [39]. The study
in [38] claims that for the median false positive counts (dis-
crimination quality), JA had a higher precision than other
methods using sequence profiles or hidden Markov models.
However, no independent test for this claim is available. The
Family Pairwise Search (FPS) is another algorithm not based
on position specific score but based on the multiple pairwise
alignments between the sequence in the query set and those
sequences in the database [40].

2.3. Profile-Profile Comparison

Profile-profile comparison detects the remote homolog
by comparing two profiles which are constructed in the
similar way as the (multiple alignments or HMM) profile
described in section 2.2. It has been shown that profile-
profile comparison is significantly more sensitive in detect-
ing remote homologs than the sequence-profile based search
programs, such as PSI-BLAST and profile HMMs [41,42].
The profile-profile comparison may be able to achieve the
same order of magnitude as the improvement of PSI-BLAST
over BLAST [41]. One assessment demonstrated that pro-
file-profile comparison outperformed sequence-profile com-
parison over 30% [43]. Nevertheless, the profile-profile ap-
proaches are not used so frequently as sequence-profile tools.
A major problem for profile-profile methods is that they re-
quire two confident profiles. In most cases, users without
extensive experience in bioinformatics cannot provide high-
quality profiles easily. Thus, generally one has to apply PSI-
BLAST or some other sequence-profile methods to generate
profiles first, and the final accuracy will be affected dramati-
cally by this profile construction step. In addition, as the
number of the entries in some databases (e.g. nr) is very
large, the processes of profile construction and profile-
profile comparison may be very time consuming.

The available profile-profile comparison tools include
COMPASS [44,45], PROF_SIM [41], COACH [46],
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HHsearch [47], FORTE [48], HMAP [49], and SP? [50].
Among these methods, COMPASS, PROF_SIM, and
FORTE are multiple alignment-multiple alignment compari-
son based approaches, whereas COACH and HHsearch are
HMM-HMM based methods. The software evaluation shows
that COACH is only slightly better than COMPASS, but
COACH is much faster (5 times) than COMPASS according
to searching speed [46]. Similar to COACH, HHsearch gen-
erated 1.2, 1.7, and 3.3 times more good alignments than
COMPASS at the family, superfamily, and fold level [47].
HHsearch is also 10 times faster than PROF_SIM and 17
times faster than COMPASS [47].

HMAP [49] uses profile-to-profile alignment with posi-
tion-dependent weights for both sequence and structural in-
formation. Since the core structural elements and secondary
structural information are only used in the weighting func-
tion and the profile itself is sequence-based, HMAP is still a
sequence comparison method, instead of a threading method
as described below. The results of HMAP suggest that incor-
poration of structural information brings substantial im-
provement over the pure sequenced based profile-to-profile
approaches. SP® [50] is another structural-derived sequence
profile-profile method. SP® performs profile-profile compari-
son for: (1) evolutionary derived sequence profile of the
query sequence and that of the template sequence; (2) the
query sequence profile and the template profile derived from
the aligned structures of the templates. The information on
the depth of residues from protein surface was incorporated
to compensate the potentially lost information by fragmented
structural alignment. This strategy proposed in SP® was
shown to improve the performance significantly than previ-
ous version SP (sequence profile alone) and SP? (sequence
plus secondary structure profiles).

Among these methods, COMPASS adapted the statistical
methods from pairwise sequence comparison, Extreme
Value Distribution (EVD) [22] to estimate the homology
significance for two protein profiles to compare. The E val-
ues will be assigned after the profile comparison. The lower
E values, the more confident the compared protein profiles.

2.4. Phylogenetic Analysis

The phylogenetic relationship of the sequences directly
reflects the evolutionary relationship between sequences.
Thus, it will be able to directly detect or validate the remote
homolog. But in practice, it may not be efficient to use
phylogenetic analysis to identify remote homolog because
(1) the evolutionary distance is too far to detect, (2) current
phylogenetic tree construction strategies cannot guarantee
the optimal tree, and (3) as the number of sequences in-
crease, the chance of obtaining “wrong” tree increases expo-
nentially. Despite these disadvantages, some research has
been carried out for the applications of phylogenetic analysis
in remote homolog identification. For example, Rehmsmeier
and Vingron [51] used the length of the edge in the tree to
judge the homology between query sequence and a family.
Recently, in T-HMM [52], the phylogenetic information has
been incorporated into the profile HMM and resulted in an
improved accuracy. The new version of T-HMM with itera-
tive algorithm for model refinement was shown to have a
better performance [53].
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Based on evolutionary relationship, derivation of the an-
cestral sequences may enhance the remote homolog identifi-
cation since those ancestral sequences may be more similar
to some remote homologs. ANCESCON [54] and GASP
[55] have been developed specifically for ancestral protein
sequence reconstruction.

2.5 Other Approaches

All the above methods rely on protein sequence align-
ments, either pairwise or multiple. There are alternative
methods that are also based on sequence comparison. These
methods may not have good specificity, i.e., the prediction
reliability may not be as high as the methods above. How-
ever, they may be more sensitive so that they can detect
some remote homologs that cannot be identified by the direct
sequence alignment of amino acids. Six methods based on
protein related features are summarized below. The other
gene attributes for nucleotide sequence, such as GC content
and codon usage, may also be useful in remote homolog
identification, and this will not be discussed in the paper.

2.5.1. Homology Detection Through Intermediate Se-
guences

This approach [56] is based on the idea that two se-
guences might be so divergent that a direct comparison be-
tween them may not yield any meaningful results, while both
of the sequences may be similar to a third one which will act
as a transitive sequence between the original two. This is the
approach implemented in the DOUBLE-BLAST tool, where
the BLAST hits of a query protein sequence are used as a
new set of queries for the next BLAST run. The work by
Park et al. [56] also suggests that the ISS (Intermediate Se-
guence Search) approach works better in prediction sensitiv-
ity than profile-sequence approaches such as PSI-BLAST.
Other implementations of homology detection through ISS
are also available [57-59].

2.5.2 Incorporation of Secondary Structure Information

This approach [60,61] is based on the fact that secondary
structures of proteins are more likely to be conserved than
their sequences. In addition, the accuracy of secondary
structure prediction is close to 80%. Hence, one can predict
the secondary structures for two proteins under alignment,
and then use the predicted secondary structures as an addi-
tional scoring function. It was found that if the predicted
secondary structures of two compared sequences match by
more than 50%, then these sequences are more likely to be
structurally related (also likely to be homologs). Even when
the sequence identity was below 20%, homology could still
be detected using the secondary structure comparison [62].

Wallgvist et al. [63] combined both PSI-BLAST and
secondary structure prediction to detect remote homology
and found that this combination generated higher prediction
sensitivity than PSI-BLAST alone. Structure-based ALign-
ment TOol (SALTO) [64] is another recent sequence-
sequence comparison software incorporating the secondary
structural information, which was derived from the con-
served domains in the NCBI’s Conserved Domain Database.
DescFold [65] further integrated PSI-based descriptor, the
predicted secondary structure descriptor, and the PROSITE
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motif-based descriptor by using a support vector machine-
learning algorithm [66]. DescFold was shown to have better
prediction accuracy than any method using one of these three
descriptors.

2.5.3 Search Remote Homolog Using Hydrophobicity Pro-
file

This approach is based on hydrophobicity profile ex-
trapolated from the hydropathy scales of residues along a
protein sequence. Hydropathy scale is defined as a measure
of hydrophobicity of an amino acid and comes in several
different sets. A hydrophobicity profile value at a certain
sequence position is obtained by averaging the hydrophobic-
ity scales of several neighboring residues. In some cases, the
two remote homologs do not share any significant sequence
similarity, but they share similar hydrophobicity profiles.
Detecting a similar hydrophobicity profile for the query
protein in a protein sequence database can be an alternative
approach for possible remote homolog identification. Such
strategy is implemented in the Protein Hydrophilic-
ity/Hydrophobicity Search and Comparison  Server
(http://bioinformatics.weizmann.ac.il/hydroph/) [67].

2.5.4 Homolog Detection Using Compositional Properties
of Protein Sequence

In this approach, as implemented in PropSearch [68], a
fundamentally different measure of similarity between pro-
teins is used — protein dissimilarity is defined as a weighted
sum of differences of compositional (physico-chemical)
properties such as singlet/doublet residue composition, mo-
lecular weight, and isoelectric point. This approach can use
either a single sequence or multiple sequences as a query to
the database. In case of multiple sequences being used as a
query, they can be reconciled into a consensus sequence de-
scribing the “average composition” of the protein family.
PropSearch does not require alignments and is very fast
when scanning a preprocessed database. The searches use
reduced information from protein sequence, and hence, more
false positives are expected than sequence-alignment meth-
ods. Nevertheless, the tool provides a useful alternative for
further remote homolog identification when traditional se-
quence/profile-based methods fail.

2.5.5 Homologous Relationship with Frame-Shift

This approach [69] is based on the assumption that some
nucleotide frameshifts in DNA/RNA that result in changes in
protein are responsible for the divergence between protein
sequences. For example, if two genes are duplicated from the
same ancestral DNA, due to point mutation and in-frame
insertions/deletions for one or both of these two genes, the
resulting protein sequences may be entirely different. How-
ever, they may maintain the similarity at the nucleotide level.
In these cases, the classical sequence comparison methods
using protein sequences, which only consider insertions,
deletions and mutations in protein sequences, will not be
able to detect such evolutionary relationships. To account for
frame-shifts, sequences were compared using special amino
acid substitution matrices for the alternate frames of transla-
tion. Such a method provides a sensitive approach for de-
tecting a different type of remote homologs. Since these
methods are based on an assumption completely different
from other protein sequence based methods, the performance
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of these methods cannot be compared with other methods in
general. Instead, this method may complement other se-
quence-based approaches and discover the remote homologs
missed by protein sequence based approaches.

2.5.6 Homologous Detection Through Machine Learning
Approaches

Machine learning approaches can classify the query se-
guences into two classes, either remote homologs or not. The
advantages of machine learning approaches include its flexi-
bility for incorporation of statistical assessment (e.g. prob-
ability) as well as its power for integrating various features
from a protein sequences. Generally these methods use
BLAST, PSI-BLAST, or some other sequence comparison
approaches to collect the first homologous sequences and
then apply machine-learning approaches to construct rules
for the classification. The disadvantages for these methods
are that it is usually very hard to obtain solid and large-
enough training and testing datasets. The rapidly increasing
data in the databases have increased the potential of machine
learning approaches in identifying remote homology. For
example, Homologous Induction (HI) [70] is such an algo-
rithm. HI first collects possible homologous sequences using
PSI-BLAST and then accumulates information on these ho-
mologous sequences, such as amino acid distribution for
singlets and pairs of residues, the description in SWISS-
PROT (function, keywords, organism, molecular weight, and
database reference) [71], secondary structures, predicted
cleavage sites, hydrophobicity, and length and starting point
of local PSI-BLAST alignments. Then, HI applies an induc-
tive logic programming [72] to construct the rules for classi-
fication based on learning. Their results demonstrate that HI
was more sensitive than PSI-BLAST. SVM-HMMSTR [73]
is also a method integrating the sequence information and
structural motifs, which are represented using Hidden
Markov Model. SVM-HMMSTR employs Support Vector
Machines [66] to predict remote homolog.

3. SEQUENCE-STRUCTURE COMPARISON METH-
ODS

Since the 3D structures of proteins have been better con-
served during evolution than their sequences, protein struc-
ture prediction often provides a more sensitive approach to
identify distant evolutionary relationships (remote homol-
ogy) than sequence-comparison methods. Among the pro-
tein-structure prediction methods, threading is the most suit-
able for remote homolog identification [74-77]. The idea of
threading was derived from the observations that proteins
with no apparent sequence similarity could have similar
structural folds and that the total number of different struc-
tural folds in nature may be small (possibly a few thousand)
[78]. Thus, a structure prediction problem can be reduced to
a recognition problem, i.e., given a query protein sequence,
searching for the most compatible structural fold based on
sequence-structure relationships. Sequence-structure rela-
tionships include the notion that different amino acids may
prefer different structural environments. For instance, a hy-
drophobic amino acid tends to be in the interior of a globular
protein, and proline rarely occurs in an _-helix. Once a
structural template for the query sequence is identified, the
template can serve as a basis for function inference of the
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query protein, although the template can be an analog of the
query protein (i.e., the query and the template do not share
biological function or have evolutionary relationship). In this
section, we will first introduce the four components of
threading. Then we will discuss how to use the predicted
structural template for function inference of the query pro-
tein. Readers can find more details about protein structure
prediction based on threading in [79,80].

3.1. Threading Components

A threading method typically consists of four compo-
nents [81]: (1) a library of representative 3D protein struc-
tures as templates; (2) an energy function for measuring the
fitness between a query sequence and a template structure in
the library; (3) a threading algorithm for searching the lowest
energy among the possible alignments for a given sequence-
template pair; (4) a criterion for estimating the confidence
level of the predicted structure. The following discussion
addresses each aspect in detail.

3.1.1. Fold template Library

A fold template library is intended to represent all the
experimentally determined protein structures in the database
PDB [82]. As many proteins in PDB are similar to each other
in both sequence and structure, it is not necessary to include
all of them in a fold library. Typically, only the representa-
tive proteins based on protein structure classification are
used. Most template libraries of the existing threading pro-
grams are based on three widely used databases of protein
structure classifications: CATH [83], FSSP [84], and SCOP
[85]. CATH is a hierarchical classification of protein domain
structures. FSSP contains a hierarchical classification of
protein chains as well as sequence neighbors and multiple
structure alignments. SCOP represents a hierarchical classi-
fication based on protein domains, and each protein in SCOP
is classified into family, superfamily, and fold. Since the
classification of folds by these three databases differs some-
what due to their different classification criteria (e.g., classi-
fication on a whole chain or a structure domain) and struc-
ture-structure comparison methods, the number of unique
folds differs among these three databases.

After the templates are selected, some processing will be
carried out for each template to include derived information
from the structure, such as protein secondary structure and
solvent accessibility, both of which are needed for threading
calculation.

3.1.2. Scoring Function

The scoring function describes how favorable an align-
ment between a query sequence and a template structure is.
Threading generally uses knowledge-based scoring functions
rather than physical energies, since physical energies are too
sensitive to small displacement of atomic coordinates, mak-
ing them less suitable for threading and too time-consuming
for computing. A typical threading scoring function has the
following form:

S total =S_mutate + S_gap + S_single + S_pair Q)

The mutation score S_mutate describes the compatibility
of substituting one amino acid type by another in sequence;
S_gap is the alignment gap penalty; the singleton score
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S_single represents a residue’s preference to its local secon-
dary structures (_-helix, _-strand, and loop) and its prefer-
ence to being in a certain solvent environment (either ex-
posed to solvent or in the interior of the protein); S_pair is
the pairwise score between spatially close residues that are
not neighbors in the protein sequence. The mutation score
and the alignment gap penalty are similar to the ones used in
sequence alignments. It has been shown that PAM250 is one
of the best substitution matrices available for threading
[86,87]. The gap penalty is often a linear function of the gap
size, with a penalty for opening a gap and a smaller penalty
for each extension thereafter. Both S_single and S_pair are
typically derived from Boltzmann statistics using a non-
redundant protein database [88]. The basic idea is that if an
amino acid is frequently observed in the interior of protein
structure, a favorable score value will be rewarded when it is
aligned to an interior position of a template.

The score function can also integrate some other attrib-
utes beyond the sequence similarity, such as structure-
function relationship. MANIFOLD [89] utilizes a non-linear
ranking scheme (a simple two-layer neural network) to inte-
grate three scores from secondary structure, sequence simi-
larity, and enzyme classification.

3.1.3. Alignment Algorithm

The alignment algorithm in the context of threading
means the computational methods to identify a sequence-
structure alignment with the best threading score as de-
scribed in Equation (1). If we do not consider the pairwise
score, a threading problem is essentially the same as a se-
quence alignment problem. Such a problem can be solved
efficiently by a dynamic programming approach [13,14].
There are a number of computer programs which essentially
use dynamic programming for their threading problem, e.g.,
123D [88], TOPITS [90], SAS [91], the UCLA-DOE Struc-
ture Prediction Server [86]. The speed of the threading algo-
rithm will be improved if pairwise score is not considered.
However, a benchmark shows that without pairwise interac-
tions, the threading accuracy is compromised [92]. On the
other hand, threading with pairwise terms and alignment
gaps is generally considered to be a very difficult problem
[93]. Two previously existing threading programs with rig-
orous solutions have exponential time complexity [94,95].
To overcome the computational expense, several methods
that use statistical sampling have been proposed
[75,76,96,97]. Such methods do not guarantee to find the
globally optimal threading alignment. To solve the globally
optimal threading problem efficiently, a unique threading
algorithm (PROSPECT) based on a divide-and-conquer al-
gorithm [98] was developed under the assumption that the
pairwise term needs to be considered only between spatially
close pairs in threading.

RAPTOR [99] formulates the protein threading problem
as a large scale integer/linear programming problem to han-
dle pairwise interactions. RAPTOR extracts the optimal
alignment using a branch-and-bound method and a standard
integer programming solver. It was convincingly demon-
strated, through applications of these programs at the CASP
contests [100], that threading programs with guaranteed
global optimality had an advantage over programs without
this property.
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3.1.4. Assessment of Threading Results

A threading score between a query sequence and a tem-
plate structure may not provide enough information to de-
termine whether the template is the “correct” fold. This is
because the scores from separate folding processes are not
generally normalized to the same scale. Hence, from the
threading scores for a query and a pool of templates, we gen-
erally cannot tell if the correct fold template for the query is
in the pool nor can we always identify the correct fold
through ranking the raw scores even if it is present in the
pool. There have been a number of attempts to “normalize”
the threading scores so that they can be compared with each
other. An early attempt was to use z-score [101]. There have
also been attempts to use the P-value schema [22,23] as a
way to assign a meaning to a threading score. P-value, which
estimates the probability of having a particular alignment
score between two random sequences, have been success-
fully applied to sequence alignment, thanks to Karlin’s
seminal work on a rigorous model of gapless alignments
[22,23]. Due to the lack of a rigorous model for threading,
the P-values are typically estimated through compiling a
“large” number of threading scores between a query se-
quence and a template after randomly shuffling its residues
[96]. While some usefulness of the estimated P-value has
been demonstrated, the problem of developing a rigorous P-
value scheme for threading still remains as an open chal-
lenge. A practical way to “normalize” the threading scores is
to feed the threading raw scores along with various normali-
zation factors such as sequence length to a neural network,
which has learned to “optimally” combine these factors
based on a training set [102,103].

In the above four components, the template library is
straight forward, while others components are still under
further development. More sophisticated energy functions,
faster alignment algorithms, and more effective confidence
assessments for threading results are being explored. On the
other hand, the pure threading approach in the classical sense
(i.e., using structure template information only) is not as
widely used as sequence-based methods; instead we observe
a trend of integrating threading with other methods for re-
mote homolog identification and protein structure prediction
in different directions: (1) mixing threading methods with
sequence-comparison methods that use sequence profiles, as
discussed above for HMAP [49]; (2) combining various pre-
diction methods to seek consensus of prediction results,
which often is more accurate than the prediction from any
single tool [104]; (3) integrating threading into a computa-
tional pipeline with various tools for protein structure and
function analyses [105]; (4) incorporating the threading idea
into ab initio protein structure prediction, i.e., the mini-
threading approach [106].

3.2. ldentification of Remote Homolog from Structural
Relationship

Even when the predicted 3D structure has a poor quality
due to a wrong alignment between the query protein and the
template, the identified fold template often represents a re-
mote homolog of the query protein, so that some evolution-
ary and functional relationship can be inferred between the
query and the template. Given that threading often produces
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inaccurate alignment, it may be more useful in remote ho-
molog identification than in 3D structure prediction.

Although remote homolog may be identified from the
predicted structures, a relationship in structure does not
guarantee a homology relation. The relationship between the
proteins can be classified at different hierarchical levels ac-
cording to structural, functional, and evolutionary relation-
ships. A widely used classification schema consists of three
levels of groups: fold, family, and superfamily, as shown in
the SCOP [85], which currently has 2,630 families, 1,447
superfamilies, and 887 folds (1.67 release, May 2005). A
family consists of proteins that have a significant sequence
identity (often 25% or higher) between each other and share
a common evolutionary ancestor (close homolog). Proteins
of different families sharing a common evolutionary origin
(reflected by their common structural and functional fea-
tures), typically remote homologs, are placed in the same
superfamily. Different superfamilies, i.e., analogs, are
grouped into a fold family if their proteins have the same
major secondary structures in the same arrangement and with
the same topological connections. The structural similarities
among proteins from the same fold family (but not the same
superfamily) may arise just from the protein energetic fa-
voring certain packing arrangements instead of a common
evolutionary origin.

Although proteins with the same fold may not be the ho-
mologs, one can suggest a possible homolog of a query se-
quence from its predicted fold using the SCOP database.
When a predicted structural fold contains multiple superfa-
milies, it is possible to predict the most likely homolog for
the query proteins among all the superfamilies based on
threading results. For example, PROSPECT [92] calculates a
z-score that measures the reliability of the structure predic-
tion and the possible homology relationship [107], as shown
in Table 2. The z-score is the threading score in standard
deviation unit relative to the average of the threading raw
score distribution of random sequences with the same amino
acid composition and sequence length against the same
structural templates. In practice, the average and the standard
deviation are estimated by repeated threading between a
template and a large number of randomly shuffled query
sequences. When the z-score of the prediction is higher, the
query and the template are more likely to be homologs, and
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one can simply select the superfamily with the highest z-
score among all the superfamilies in the predicted fold as the
(remote) homolog. When the z-score is low, the predicted
fold may not represent a homolog at all.

To further pin down whether a query protein and a pre-
dicted template are homologs, one can check functional mo-
tifs. If the predicted structure contains a functional motif
(conserved residues at a particular position in the 3D struc-
ture, not necessarily close to each other on the protein se-
quence) of a protein in the template, the query protein and
the template are probably homologs. Zhang et al. [108] have
constructed a database of functional motifs for known struc-
tures (e.g., EF-hand motif for calcium binding), called SITE.
Currently, SITE contains identified functional motifs from
about 50% of the SCOP superfamilies. One can also search
the predicted protein structure against PROCAT [109],
which is a database of 3-D enzyme active site templates.

Although the structural motifs are more general, the
comparison between the query protein and the template in
terms of the motifs depends on the alignment accuracy,
which may be difficult to achieve by threading. Hence, one
can also carry out sequence-based motif searches using
PROSITE [110,111], PRINTS [112,113], and BLOCKS
[114]. A good example is the target T0053 of CASP3 [115].
Using PROSPECT, we successfully identified a native-like
fold (lakl) of TO053 in PDB, as shown in (Fig. 2). T0053
and lakl have only 11.2% sequence identity in the sequence
independent structure-structure alignment. Without addi-
tional information, it is difficult to determine whether T0053
and lakl are remote homologs. Using the BLOCK search
[116], we found that the two proteins share the same se-
quence block with a conserved active site at His-183 in lakl
and His-145 in T0053. This information allowed us to de-
termine that the two proteins are remote homologs. Our pre-
diction turned out to be obviously correct when the experi-
mental structure of T0053 was determined (PDB code:

1qgo).

4. SEQUENCE-INDEPENDENT METHODS

Both the sequence-comparison methods and protein-
structure predictions for remote-homolog identification use
the information from the query-protein sequence. In some

Table 2. Interpretation of the z-Scores from PROSPECT
z-score interval Probability to be correct Confidence level Homology

<6 <0.3 Unlikely analogs/unrelated
6-8 0.35 Low superfamily/analogs
8-10 0.63 Medium superfamily/fold

10-12 0.85 High Superfamily

12-20 0.96 very high family/superfamily
>20 >0.99 Certain Family

The first column represents the z-score range. The second column shows the probability of a sequence-template pair sharing the same fold within a certain z-score range. The third
column shows a corresponding qualitative confidence level. The fourth column provides a possible homologous relationship between the query and template protein in terms of the
SCOP protein family classification, family, superfamily, and fold [Error! Bookmark not defined.].
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cases, the information about a remote homolog is also re-
vealed in other sources, such as structure-structure compari-
son, evolutionary footprints, and gene expression. In this
section, we will address these sequence-independent meth-
ods for remote homolog identification.

Fig. (2). A comparison between the predicted structure (left) and
the experimental one (right) for the CASP-3 target t0053. The cyl-
inders indicate a-helices, the strands indicate b-sheets, and the lines
indicate loops.

4.1. Structure-Structure Comparison

When the structure of a protein is known, one can use the
structure to identify its homologs through comparing with
other known structures. This is similar to the threading
method in the sense of using structural information, while
the structure-structure comparison is far more reliable than
sequence-sequence comparison or sequence-structure com-
parison in identifying remote homologs. Protein structure-
structure comparison had limited applications in remote ho-
molog identification in the past, as not many protein struc-
tures were available. With the advent of new technologies
such as synchrotron radiation sources and high-resolution
nuclear magnetic resonance (NMR), a great number of new
protein structures have been determined in recent years. In
particular, in the recent effort of structural genomics
[117,118], where protein structures are being determined on
a large scale, the structures of many proteins were deter-
mined without knowing their function. Structure comparison
provides a useful tool to identify remote homologs for these
proteins, and further predict functions based on the ho-
mologs.

Thus, when the structure of a protein is available, one can
use the structure to search against the database of known
protein structures, i.e., PDB, and the hits with similar struc-
tures are potential remote homologs of the query protein.
Popular tools for comparing a query protein structure against
all the structures in the PDB are DALI [119] and CE [119].
A much faster search engine for protein structure compari-
son, ProteinDBS [121], was developed recently. Based on
the alignment between the query protein structure and the
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hits in the structure database, one may find biologically in-
teresting similarities that are not detectable by sequence
comparison or threading. For example, common structural
motifs between two aligned structures can be found. Using
such information, one can tell whether two proteins of the
same fold are remote homologs or merely analogs. Several
protein-structure classification databases, such as SCOP,
CATH, and FSSP, as discussed in Section 3, can facilitate
the search for remote homolog using structure comparison.
These structural databases provide a useful resource for sys-
tematically checking the common features of structural mo-
tifs and sequence patterns among proteins in the same super-
family, and these features can help to tell whether two pro-
teins of the same structural fold are homologs or analogs.

4.2, Paralog Relationship in High-Throughput Biological
Data

During evolution, some genes may be duplicated and
then diverged (i.e., paralog as defined in Section 1). The
paralogs often have some trace in various high-throughput
biological data, including genomic sequence data, gene ex-
pression data, and genetic interaction data. Although these
traces alone are typically insufficient for predicting paralog
relationships, they can help remote paralog identification in
conjunction with other methods. In particular, when such
traces occur, a paralog prediction from other methods would
have an increased confidence level. The following three
types of traces can offer some support of possible paralog
relationships:

4.2.1 Adjacent Genes in Genomic Sequence

Many gene duplications occur in tandem. Hence, it is not
surprising that many paralogs were also found in adjacent
positions of a genome [122,123]. These parallel functional
modules increase cellular flexibility and robustness [124].
Probably the simplest approach is to apply traditional ho-
molog identification and then correlate the identified ho-
mologs with positions. In prokaryotes, it may be relatively
easier due to the general existing operon structure is likely to
preserve both functions and positions. Many operon predic-
tion approaches may be effectively adapted to paralog identi-
fication [125-128]. However, for eukaryotes, it is much more
challenging since there is no operon structure for functional
module. Through comparative genomics strategy, Li et al.
[124] took a four-step approach to predict adjacent gene re-
mote homologs: (1) calculate functional linkages for all pos-
sible protein pairs in the query genome by comparing them
with proteins in other genomes; (2) construct a matrix of
functional linkages for the query genome and group proteins
based on the similarity of their functional linkage patterns in
other genomes using a hierarchical clustering algorithm; (3)
visually search for off-diagonal clusters within the functional
linkage map; (4) manually match the module partners from
each subgroup and identify functional linkages that result
from paralogous relationship. Through this strategy, they
identified 37 cellular systems of parallel functional modules
from 10 genomes, including a number of previously reported
parologs.

The large-scale experimental protein interaction may be
applied in paralog identification in the same genome [129].
However, when compared to computational methods, they
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are much more time consuming. Probably a combination of
both computational methods and bench work may be the
most efficient and effective approach for paralog identifica-
tion in the genomic scale.

4.2.2 Correlated Microarray Gene Expression Patterns

The neighboring genes due to this duplication mechanism
often show similar expression patterns, since these adjacent
genes share a single upstream activating sequence in many
cases. The correlated gene expression pattern also relates to
the distance between the genes on the genomic sequence, as
it was found that the expression similarity was correlated to
the physical distances in both prokaryotes and eukaryotes,
such as Saccharomyces cerevisiae and Arabidopsis thaliana
[123]. This means that if two neighboring genes on a ge-
nomic sequence share similar gene expression pattern, they
are likely to be paralogs. The correlated gene expression
pattern among paralogs also extends to orthologs [130].

4.2.3 Genetic Interactions Based on Synthetic Lethality
Screening

The synthetic lethality screening is a very powerful
method for finding “genetic interaction” between gene prod-
ucts [131]. It identifies lethal deletions of two genes at the
same time, while either deletion alone is not lethal. A sys-
tematic high-throughput synthetic lethal analysis was carried
out in yeast Saccharomyces cerevisiae for 4,700 viable mu-
tants [132]. Between two genes with such a genetic interac-
tion, one may be a backup of the other, and hence, the two
genes may be paralogs.

5. ASSESSMENT OF COMPUTATIONAL METHODS

Given that so many methods are available for remote
homolog identification, it is very important to compare these
methods based on some benchmark tests. However, such a
comparison is not trivial. If we look into any particular paper
discussing an individual method, typically the paper shows
that the method outperforms others. The results depend on
what criteria are used and how the comparisons are per-
formed. At least the following six criteria can be considered
when comparing different methods for remote homolog
identification:

(1) Sensitivity of remote homolog identification, i.e., how
many true remote homologs can be identified as top hits
from all remote homologs in the database? For exam-
ple, if k remote homologs are in the database of a query
protein sequence, how many of them rank as top n.

(2) Specificity of remote homolog identification, i.e.,
among the top hits, how many of them represent true
homologs? For example, if top n hits in the database are
selected for a query protein sequence, how many of
them are true homologs?

(3) Reliable confidence assessment, i.e., to what extent can
the prediction result of homolog identification be
trusted? Does such assessment reflect the prediction ac-
curacy well?

(4) Alignment accuracy, i.e., in an alignment between the
query protein and the correctly identified remote ho-
molog, how many alignment positions are biologically
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true? A true biological alignment is typically repre-
sented by the structure-structure alignment between the
two proteins.

(5) Applicability, i.e., what conditions does a method re-
quire? For example, for the threading method, it re-
quires that the structure of a remote homolog for the
query sequence is available in the database. Some
methods do not have explicit requirements, but they
tend to work poorly in certain cases, e.g., HMMs do not
work well when the query protein does not have any
close homolog to build profiles.

(6) Computational efficiency, i.e., the computing time and
memory requirement, and their dependence on the
query protein size. This turns out to be very important
in practice, especially because many related computa-
tions are carried out in large (genome) scale. For exam-
ple, it is known that many other methods are more accu-
rate in identifying remote homologs, but PSI-BLAST is
still the most popular method for remote homolog iden-
tification, given that it is very fast and has a linear com-
putational complexity time.

Even though constant improvements have been made for
remote homolog identification methods, there is still much
room for improvement along the six criteria. It has been
shown [133] that for close homolog identification (with se-
quence similarity over 30%), almost all the methods work
very well, with insignificant differences for criteria 1-4.
However, when predicting remote homologs, none of the
methods consistently outperforms others in all of the six cri-
teria. Hence, although PSI-BLAST is the most popular
method, many other computational tools are also widely
used at the same time.

Some systematic benchmarks to compare different se-
guence-comparison methods have been constructed. These
comparisons often use SCOP as the gold standard and focus
on whether a method can detect remote homologs in the
same superfamily but in different families and also how well
the sequence alignment compares with the structural align-
ment. It was found [133] that while comparing sequences
below 30% identity (many of them are in the same family),
less than 50% of remote homologs could be detected using
tools like BLAST, FASTA or the Smith-Waterman
SSEARCH. However, even for the identified homologs, the
study in [133] suggested that the P-values generated by
BLAST seem to underestimate the errors and the alignments
are often inaccurate. Another study [134] compared the per-
formance for sequence-alignment accuracy against structure-
structure alignment among a pairwise alignment method
(BLAST), a sequence-profile method (PSI-BLAST), and an
intermediate-sequence-search method (DOUBLE-BLAST).
On sequence similarities between 10% and 15%, BLAST,
PSI-BLAST, and DOUBLE-BLAST correctly aligned 28%,
40%, and 46% of these sequences, respectively. This indi-
cates that all methods have much room for improvement in
alignment accuracy.

Another set of benchmarks comes from the protein-
structure-prediction community. Although protein structure
prediction focuses on structure instead of homology, the
dominant method is to identify homologs in the protein
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structure database PDB and use the homologs as templates to
build protein tertiary structures. As a result, the structure-
prediction assessment is also applicable to remote-homolog
prediction. To assess objectively the state of the art in pre-
diction tools for protein structures, the computational struc-
tural biology community has agreed on an evaluation system
called CASP (Community Wide Experiment on the Critical
Assessment of Techniques for Protein Structure Prediction,
http://predictioncenter.lInl.gov/). CASP was initiated in 1994
and has been a biannual event since its inception. In each
CASP, participants were given tens of protein sequences
whose experimental structures were being solved or had
been solved but not published. CASP participants then pre-
dicted their structures blindly, either in an automated fashion
or with manual adjustment. A group of invited assessors
evaluated how well each predicted structure matched the
experimental structure. At the end of the prediction season,
the performance of each team was ranked. The CASP exer-
cises provide an objective way to assess related computa-
tional methods, particularly for Criteria 1, 4, and 5. The
strengths and weaknesses of each method are often revealed.
For example, even though remote homolog identification
methods have been consistently improved, the alignment
accuracy had little improvement over the past few years
[135,136]. Two observations from the CASPs are (1) manual
process (the human knowledge) can help improve prediction
significantly, and (2) using consensus approach, i.e., to find
common hits from different methods, can outperform any
individual method substantially [137]. Based on such find-
ings, computational pipelines [138-140] or expert systems
[141] have been developed to incorporate various methods
and human knowledge to improve the prediction accuracy.
Some hybrid methods using various types of information
together were also developed [142,143].

Other than manual predictions and evaluations in CASP,
some fully automated servers for protein structure predic-
tions and evaluations were developed. Such efforts comple-
ment CASP and provide useful information for assessments
of computational tools themselves (instead of human ex-
perts). One of them is CAFASP [144], which was carried out
in parallel with CASP, using the same set of prediction tar-
gets. The third CAFASP in 2003 showed that several best
automated prediction servers using the consensus approaches
achieved comparable performance as human CASP predic-
tors. This result shows that significant progress has been
achieved in automatic structure prediction. Another auto-
mated evaluation server is MaxBench (http://www.
sanger.ac.uk/Users/Ipl/MaxBench/) [145]. This system
makes it easy for developers both to compare the perform-
ance of their methods to standard algorithms and to investi-
gate the results of individual comparisons. Two large-scale
evaluation servers using updated PDB entries as test cases
are LiveBench (http://bioinfo.pl/LiveBench/) [146] and EVA
(http://cubic.bioc.columbia.edu/eval) [147]. The evaluation
is updated automatically when sequences of newly available
protein structures in PDB are sent to the servers and their
predictions are collected. The predictions are then compared
to the experimental structures automatically and the results
are published on the Web pages. Over time, the two servers
have accumulated prediction results for a large number of
proteins with various prediction methods and they provide
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useful information to developers as well as users of these
prediction tools.

6. IDENTIFICATION OF REMOTE HOMOLOGS OF
SARS-COV GENES

Here we show an example using threading to identify
remote homologs of SARS-CoV genes. We applied thread-
ing in conjunction with other computational methods to pre-
dict protein structure and identify homologs. Using
PROSPECT, we performed a global analysis of the structural
folds and homologs for the SARS-CoV proteins and a de-
tailed study of the S, M, and N-aminopeptidase proteins
[148].

6.1. Overview of SARS and SARS-CoV

In 2003, a new unusual pneumonia, Severe Acute Respi-
ratory Syndrome (SARS), attacked us as “a new apocalyptic
horseman” [149], which was caused by a novel coronavirus,
SARS-CoV [151]. After the first case of this disease was
identified in November 2002 in Guangdong Province, China,
this disease spread to more than 32 countries and areas
around the world. Until August 7, 2003, 8,422 persons
worldwide have been infected by SARS, with the vast ma-
jority occurred in Mainland China (5,327 infected; 349
deaths), Hong Kong (1,755; 300), Taiwan (665; 180), Can-
ada (251, 41), Singapore (238; 33), and Vietnam (63; 5).
There were about 33 cases but no deaths in the United States
(see the “WHO SARS case summary”, http://www.who.int
[csr/sars/country/en/country2003_08_15.pdf). This disease
resulted in mortality of 11% in general. Mortality in persons
older than 60 years was reported to be more than 40% [151].
In addition, the economic loss caused by SARS reached bil-
lions of dollars. The SARS has been gradually under control
since July 2003 although occasional cases are still witnessed
around the world. However, we still face the potential chal-
lenges from possible future occurrence of this disease, which
could be extraordinarily severe.

SARS-CoV is a novel coronavirus, which is similar in
genome organization but distantly related to previously char-
acterized coronaviruses in gene sequences [152-154].
Among the identified open reading frames (ORFs), replicase
ORFlab, spike [S], envelope [E], membrane [M] and nu-
cleopcapsid [N] are found in other known coronaviruses with
a conserved genome organization. In addition to this com-
mon genome organization, this novel virus also has a number
of nonstructural proteins with  unknown functions
[152,153,155].

6.2. Computational Survey of All of ORFs in SARS-CoV

Knowledge of structures and functions of the proteins in
SARS-CoV are crucial in understanding the SARS disease.
Although several sequence analyses have been published
[152,153,156], there has been no comprehensive structural
and functional analysis for SARS-CoV. In particular, the
amino acid sequence homology between SARS-CoV and
any other known coronaviruses are generally less than 40-
50% [152]. This finding suggests that SARS-CoV has gone
through a substantial evolution from other known coronavi-
ruses. This novel coronavirus may possess many unigue un-
known features. A step towards characterizing the genes in
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SARS-CoV is an in-depth computational analysis of protein
structure and function. We used the PROSPECT pipeline to
survey the 11 Open Reading Frames (ORFs) in SARS-CoV
strain Urbani (GenBank ID: 30027617), one of the first
SARS-CoV genomes [152]. Table 3 shows part of our sur-
vey results, which give the possible signal peptide and trans-
membrane regions for each ORF.

6.3. Structural Prediction of S, M and N-Aminopeptidase
in SARS-CoV

We applied PROSPECT to predict the structures for the
M protein as well as the S1 and S2 domains. (Table 4) sum-
marizes the structure prediction results. The prediction re-
sults can be evaluated through Z-scores. As described in
(Table 2), if the Z-score is above 10, the prediction is highly
confident, and typically no manual assessment is needed.
This is the case for the S2 domain. If the Z-score is less than
6, the prediction confidence level is low and manual analyses
are necessary. For the M protein, our manual analyses indi-
cated a good confidence level that the M protein adopts
structural templates of 1boy or ledha, both of which share
the same structural fold, i.e., immunoglobulin (Ig)-like beta
sandwich. Initial manual analyses did not yield a confident
structure prediction for the S1 domain, and further studies
are needed.

Current Protein and Peptide Science, 2005, Vol. 6, No. 6 15

Interestingly, both the S2 domain and the M protein are
predicted to adopt the fold of Ig-like beta sandwich (see
Figs. 3A, 3B). The structural similarity suggests that the S2
domain and the M protein may be evolutionarily related
through gene fusion and duplication, although their se-
quences do not have significant similarity anymore after the
long period of evolution. Such a phenomenon often occurs
among the proteins related to the same biological pathway
[85]. Our results might explain how the M protein interacts
with the S2 domain, for virus assembly; since the S2 domain
with the fold of Ig-like beta sandwich can interact with the
S1 domain, the M protein with the same fold can probably
interact with the S1 domain in the mode. This suggests that
the S1 domain may act as an on-off switch between the S2
domain and the M protein. Such a mechanism may suggest
that the M protein could be also involved in the virus-host
cell interaction. After we made the prediction, we found that
our suggestion was supported by a recent study in the murine
hepatitis coronavirus study, which showed the glycosylation
of the M protein affected the interferogenic capacity of the
virus [157].

N-aminopeptidases in many organisms act as a cell sur-
face receptor for coronaviruses including TGEV, FIPV,
FeCV, Human-CoV, and PRCV [158,159]. It has been
shown that the N-aminopeptidase interacts with the TGEV S

Table 3. A Computational Survey of All the ORFs in SARS-CoV
ORF Protein length Swiss-Prot entry Signal P Trans-membrane
(start...end, p)
AAP13450 (X5) 84 - - Soluble protein
AAP13449 (X4) 122 - 15...16, 0.637 Membrane protein
Secondary helix: 1-23; Primary helix: 96-117
AAP13448 (X3) 63 - 39...40, 0.106 Membrane protein
Primary helix: 12-34
AAP13447 (X2) 154 - - Soluble protein
AAP13446 (X1) 274 1 61...62, 0.435 Membrane protein
Primary helices: 40-62, 77-99; Secondary helices: 108-130
AAP13445 (N) 422 18 - Soluble protein
AAP13444 (M) 221 12 39...40, 1.000 Membrane protein
Primary helices: 46-68, 78-100; Secondary helices: 14-36
AAP13443 (E) 76 - 43...44,0.880 Membrane protein
Primary helices: 11-33, 37-59
AAP13441 (S) 1,255 18 13...14,0.421 S1 domain: Soluble protein
S2 domain: Membrane protein
Primary helix: 531-553
AAP13440 (non- 2,695 9 - Soluble protein
structural polyprotein)
AAP13439 (non- 4,382 2 - 16 helices
structural polyprotein)

The different columns in the table show the gene identification/gene name, number of amino acids, the number of homologs in SwissProt, the cleavage site of the predicted signal
peptide (two boundary residues and prediction confidence), and predicted trans-membrane segments (primary helix means that the helix is stable in membrane by itself; the secon-
dary helix requires interacting other trans-membrane helix/helices to keep it stable in membrane).
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Table 4.  Structural Analyses of the M and S Proteins, and the N-Aminopeptidase
PDB template z Class Fold Family Function
(SARS-CoV ORF) | score
1vfaa 15.45 All beta 1g-like beta sandwich | V set domains (anti- acts as mouse monoclonal antibody.
(S2) protein body variable domain-
like)
1boy <6 All beta 1g-like beta sandwich | Fibronectin type I11 plays a role in initiating the cell- surface assembly
(M) protein and propagation of the coagulation protease cascade.
ledha <6 All beta 1g-like beta sandwich | Cadherin Cadherins are cell adhesion proteins interacting with
(M) protein themselves in a homophilic manner in order to con-
nect cells.
1has6 73.62 Alpha/beta Zincin-like Leukotriene A4 hy- hydrolyzes an epoxide moiety of leukotriene A4 to
(aminopeptidase) Protein drolase catalytic do- leukotriene B4. The enzyme also has some peptidase
main activity.

The columns in the table indicate the PDB code of the structural template (and chain name in the fifth letter if available), the z-score estimated from PROSPECT for the prediction,
and the class, fold, family, and function of the predicted structural template. The sequence identity between the query SARS protein and template sequence is below 25% in all cases.

protein in a specific manner [158]. However, the receptors
may be different even for the coronaviruses of the same
hosts. Human-CoV -229E uses hAPN as the virus receptor
whereas Human-CoV-OC43 uses MHC | as its receptor
[160,161,]. Bovine coronavirus (BCV) uses 9-O-
actylneuraminic acid as its receptor [162], and murine
coronavirus use CEACAM as its receptor [163].

The aminopeptidases are a group of universal peptidases
with various functions [164-166]. For example, besides
functioning in the cell adhesion and amino acid scavenging,
this enzyme can serve as the receptor of Human CoV 229E
as stated above. Although it is possible that SARS-CoV may
utilize other receptors, the N-aminopeptidase or a similar
structural fold of N-aminopeptidase might also be the re-
ceptor of SARS-CoV [154]. Before predicting the human
receptors for SARS-CoV systematically, we first predicted
the structure of N-aminopeptidase as a basis for understand-
ing its interaction with the S protein. As shown in (Table 4),
the structure prediction for N-aminopeptidase has a high Z
score, which indicates a good confidence of the structure
prediction. The graphical view of the predicted structural
fold is shown in Fig. 3C. Independent of our study, Spiga et
al. [167] also predicted the structural of Spike protein of
SARS-CoV. They predicted the S2 is an Ig-like beta sand-
wich structure with the template of C. botulinum neurotoxin
B (PDB code: 1g9d), which is similar to our result. Fig. 4 is
the template of C. botulinum neurotoxin B.

6.4. Structural Prediction of ORF-X2 in SARS-CoV

Unlike any other coronavirus, SARS-CoV has 5-11 novel
open reading frames. Most recently, the largest of ORF in
SARS (U274, X1 in Table 3) has been expressed and found
to be involved in the apoptosis via a caspase-dependent
pathway [168,169]. However, the functions of all the other
OREFs are still not known. Here we use ORF-X2 as an exam-
ple for remote homolog identification.

We appliel70], and GenTHREADER [170] to identify
the remote homolog for ORF-X2. Both PROSPECT and

Fig. (3). A. Structural template 1vfa for the S2 domain. B. Struc-
tural template 1ledha for the M protein. C. Structural template 1hs6a
for the N-aminopeptidase.
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Fig. (4). The 3D structure of C. botulinum neurotoxin B (PDB
code: 1g9d).

SAM returned the same top hit as Interleukin 2 related ho-
molog (PDB code: 3ink). However, GenTHREADER indi-
cated ORF-X2 may be a remote homolg for protein-tyrosine
kinase (PDB code: 1k04). These predicted functions of ORF-
X2 provide some hypotheses for further experimental verifi-
cation.

7. DISCUSSIONS

In summary, significant advances have been made for
computational identification of protein remote homologs in
the past decade. Various methods have pushed our limit to
find distantly related homologs that are unidentifiable from
simple pairwise sequence comparisons. These methods often
utilize the evolutionary information in the sequence database
effectively, in particular through building multiple sequence
profiles or identifying evolutionary intermediates. Many
methods also use protein structural information, including
integrating protein secondary structure prediction into the
process of sequence comparison, searching through se-
quence-structure comparisons (threading), and performing
structure-structure alignments. More recently, mega-servers
using multiple methods to find consensus solutions have
been developed. These servers often show significant im-
provement over any single method. All these developments
have a big impact on the field of post-genomic biology, es-
pecially for genome annotation, comparative genomics,
structural genomics, and functional genomics. Not only
computational biologists but also experimentalists benefit
tremendously from these tools, which often provide useful
information about the structure and function of a protein
through its (remote) homologs. The computational results
can help develop biological hypothesis for new experiments
and also help the interpretation of experimental data.

However, these computational tools should not be used
blindly for inferring remote homologies. It should be noted
that even when the sequence similarity between two proteins
is high, it might not always correspond to homology. There
is always a possibility that the sequence similarity was by
chance, rather than due to biological relationship. When
more sensitive methods for remote-homolog identification
are used, the confidence level of a comparison result can be
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low, and it is not rare that false positive predictions are gen-
erated. Also, homology may not imply function conserva-
tion. Many remote homologs, especially paralogs, have di-
vergent functions, although their functions are often related
in a broader category. To best take advantage of the available
computational tools and reduce the chance of wrong predic-
tion, it is important to use multiple tools to check for consen-
sus solutions and differences between various results. It is
also important to use other computational approaches [171],
such as prediction of signal peptide cleavage sites, subcellu-
lar localization, protein domain prediction, prediction of
transmembrane helices, and sequence motif prediction, to
predict the properties and functions of the proteins so that
one can better assess the potential homologous and func-
tional relationships between proteins of interest, as illustrated
in our example in Section 6. Furthermore, when high-
throughput data (e.g., gene expression data and protein-
protein interaction data) are available, it is very useful to
utilize these experimental data to confirm and extend the
homologous relationship identified from sequence or struc-
ture based methods [172,173]. An example of using various
methods in conjunction with homolog identification is de-
scribed in a recent paper [174]. Finally, additional experi-
ments are generally needed to confirm the predictions.

There are still many challenging problems in remote ho-
molog identification and the related research is very active.
More sensitive methods are needed for difficult homolog
identifications. Still in many cases, people know that ho-
molog of protein X with well characterized function in spe-
cies A should be present in species B, since species B shows
the same phenotype related to protein X as does species A.
However, current methods may not be sensitive enough to
detect the homolog of protein X in species B. Another chal-
lenge is the opposite. Sometimes there are many homologs
detected in species X, but it is unknown which one repre-
sents the true ortholog. Other than the sensitivity issues, cur-
rent confidence assessment methods of the homolog identifi-
cation results need further improvement. Some tools, such as
BLAST, PSI-BLAST, and FASTA, have good confidence
assessment methods, but they often overestimate statistical
significance. Many other tools have primitive assessment
methods or no assessment at all. As a result, generally, re-
mote homolog identification has poor prediction specificity,
i.e., false positives are frequently predicted. In addition, the
current alignment accuracy between remote homologs is
typically poor, and there is much room for improvement.
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